
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Getting Started Guide

Netscape Application Server
Version 4.0 SP2
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright © 1999 Netscape Communications Corp. All rights reserved.

Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot, and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. Other product and brand names are
trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

Version 4.0 SP2

Copyright ©1999 Netscape Communications Corp. All rights reserved.

Printed in the United States of America. 00 99 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents

Preface ...7

How This Guide Is Organized ..7

Using the Documentation ...8

Documentation Conventions ..11

Chapter 1 Product Overview ..13

The Multi-tiered Environment ...13

Product Components ...15

Programming APIs ..15

System Services and Application Services ...16

Sample Applications ...16

NAS Administrator ...17

NAS Deployment Manager ...17

Netscape Directory Server ..17

Features ...17

Rapid Application Development ...19

Application Model ...19

Core Services ...21

A Choice of Tools ...21

High Scalability ..22

Application Partitioning ..22

Dynamic Load Balancing ..23

High Performance ..24

Database Connection Caching ...25

Result Caching ...25

Data Streaming ..26

Multi-threaded Capabilities ...26

Optimized Communication with Web Servers ..27
Contents iii

High Availability .. 27

Session and State Management .. 28

Security .. 28

User Authentication .. 29

Access Controls to Data Sources ... 29

Management Capabilities .. 29

Netscape Application Server Administrator .. 30

Netscape Directory Server .. 31

Support for Third-Party Management Tools ... 32

Chapter 2 Installing NAS on Solaris 8 .. 33

About Installing NAS ... 33

Checking Software Requirements .. 34

Running the Quick Installation Script .. 34

Verifying Installation ... 36

Chapter 3 Using the Sample Applications .. 37

Online Bookstore Sample Application .. 38

Running the Sample Application ... 41

Updating the Sample Application .. 42

Chapter 4 Developing Applications .. 43

Parts of an Application ... 44

Data Access Layer ... 45

Presentation Layer .. 46

Business Logic Layer .. 46

Assembling the Pieces .. 47

Types of Files in a Project .. 47

How Files Relate to Each Other .. 47

Getting Started ... 48

Understand the Netscape Application Server Environment 49

Define the Application Environment ... 49

Define the Application Requirements ... 49

Define the User Interface ... 50

Set Up the Data Sources .. 51
iv Getting Started Guide

Writing Secure Applications ... 52

Inside the Online Bookstore Sample Application ... 52

Application Model .. 52

Application Flow .. 53

Presentation Flow .. 55

Directory Structure .. 59

Servlets ... 60

EJB Functionality ... 61

Chapter 5 Deploying Applications .. 63

Deploying an Application Using Deployment Manager 63

Specifying Application Directories .. 64

Packaging Application Files for Deployment .. 65

Deploying an Application .. 79

Downloading a Package .. 81

Deploying Application Files Manually ... 82

Manually Deploying EJBs ... 82

Manually Deploying Servlets and JSPs .. 84

Manually Deploying Data Sources .. 88

Index .. 91

vi Getting Started Guide

Preface
The Getting Started Guide provides an overview of the Netscape Application
Server (NAS) and information about how to get started creating applications on
your own. In addition, this guide describes how to use the quick installation
script to install NAS.

This preface contains the following topics:

• How This Guide Is Organized

• Using the Documentation

• Documentation Conventions

How This Guide Is Organized
The following chapter are included in this guide:

• Chapter 1, “Product Overview” provides background information about the
product components, features, and system architecture of Netscape
Application Server (NAS).

• Chapter 2, “Installing NAS on Solaris 8” describes how to quickly install
NAS 4.0 SP2.

• Chapter 3, “Using the Sample Applications” describes the suite of sample
applications that were installed with NAS and tells you how to run them.

• Chapter 4, “Developing Applications” describes the relationships between
files used in creating applications to run on the Netscape Application Server
and provides an in-depth review of the online bookstore sample
application.

• Chapter 5, “Deploying Applications” describes how to deploy applications
from one machine to another using the Deployment Manager.
Preface 7

Using the Documentation
Using the Documentation
The following table lists the tasks and concepts that are described in the
Netscape Application Server (NAS) printed manuals and online read-me file in
addition to this Getting Started Guide. If you are trying to accomplish a specific
task or learn more about a specific concept, refer to the appropriate manual.

Note that the printed manuals are also available as online files in PDF and
HTML format.

For information about See the following Shipped with

Late-breaking information about
the software and the
documentation

readme.htm NAS 4.0 Developer
Edition (Solaris), NAS 4.0,
NAB 4.0

Installing Netscape Application
Server and its various components
(Web Connector plug-in,
Netscape Application Server
Administrator), and configuring
the sample applications

Installation Guide NAS 4.0 Developer
Edition (Solaris), NAS 4.0

Installing Netscape Application
Builder.

install.htm NAB 4.0

Basic features of NAS, such as its
software components, general
capabilities, and system
architecture.

Overview NAS 4.0 Developer
Edition (Solaris), NAS 4.0,
NAB 4.0
8 Getting Started Guide

Using the Documentation
Deploying Netscape Application
Server at your site, by performing
the following tasks:

• Planning your Netscape
Application Server
environment

• Integrating the product within
your existing enterprise and
network topology

• Developing server capacity
and performance goals

• Running stress tests to
measure server performance

• Fine-tuning the server to
improve performance

Deployment
Guide

NAS 4.0

Administering one or more
application servers using the
Netscape Application Server
Administrator tool to perform the
following tasks:

• Deploying applications with
the Deployment Manager tool

• Monitoring and logging server
activity

• Setting up users and groups

• Administering database
connectivity

• Administering transactions

• Load balancing servers

• Managing distributed data
synchronization

Administration
Guide

NAS 4.0

Migrating your applications to the
new Netscape Application Server
4.0 programming model from
version 2.1, including a sample
migration of an Online Bank
application provided with
Netscape Application Server

Migration Guide NAS 4.0 Developer
Edition (Solaris), NAS 4.0,
NAB 4.0

For information about See the following Shipped with
Preface 9

Using the Documentation
Creating NAS 4.0 applications
within an integrated development
environment by performing the
following tasks:

• Creating and managing
projects

• Using wizards

• Creating data-access logic

• Creating presentation logic
and layout

• Creating business logic

• Compiling, testing, and
debugging applications

• Deploying and downloading
applications

• Working with source control

• Using third-party tools

User’s Guide NAB 4.0

Creating NAS 4.0 applications that
follow the new open Java
standards model (Servlets, EJBs,
JSPs, and JDBC), by performing
the following tasks:

• Creating the presentation and
execution layers of an
application

• Placing discrete pieces of
business logic and entities
into Enterprise Java Bean
(EJB) components

• Using JDBC to communicate
with databases

• Using iterative testing,
debugging, and application
fine-tuning procedures to
generate applications that
execute correctly and quickly

Programmer’s
Guide (Java)

NAS 4.0 Developer
Edition (Solaris), NAB 4.0

For information about See the following Shipped with
10 Getting Started Guide

Documentation Conventions
Documentation Conventions
File and directory paths are given in Unix format with slashes separating
directory names.

This guide uses URLs of the form:

http://server.domain/path/file.html

In these URLs, server is the name of server on which you run your application;
domain is your Internet domain name; path is the directory structure on the
server; and file is an individual filename. Italic items in URLs are placeholders.

Using the public classes and
interfaces, and their methods in
the Netscape Application Server
class library to write Java
applications

Server
Foundation Class
Reference (Java)

NAS 4.0 Developer
Edition (Solaris), NAB 4.0

Creating NAS C++ applications
using the NAS class library by
performing the following tasks:

• Designing applications

• Writing AppLogics

• Creating HTML templates

• Creating queries

• Running and debugging
applications

Programmer’s
Guide (C++)

Order separately

Using the public classes and
interfaces, and their methods in
the Netscape Application Server
class library to write C++
applications

Server
Foundation Class
Reference (C++)

Order separately

For information about See the following Shipped with
Preface 11

Documentation Conventions
This guide uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
path names, directory names, and HTML tags.

• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.
12 Getting Started Guide

C h a p t e r

1
Chapter 1Product Overview
This chapter explains the role of Netscape Application Server (NAS) within the
multitier enterprise environment. In addition, the chapter summarizes the main
product components that come with NAS.

This chapter contains the following sections:

• The Multi-tiered Environment

• Product Components

The Multi-tiered Environment
Netscape Application Server is the middleware between enterprise data sources
and the clients that access those data sources. Business code is stored and
processed on Netscape Application Server (NAS) rather than on clients. An
application is deployed and managed in a single location, and the application
is accessible to large numbers of heterogeneous clients.

NAS applications run in a distributed, multi-tiered environment. This means
that an enterprise system might consist of several application servers
(computers running the Netscape Application Server software), along with
multiple database servers and web servers. Your application code can be
distributed among the application servers.
Product Overview 13

The Multi-tiered Environment
Overall, the machines and software involved are divided into three tiers:

• a client tier, represented by web browsers or rich clients (such as a Java
application).

• a server tier, represented by a web server (such as iPlanet Web Server) and
an application server (such as Netscape Application Server).

• a data tier, represented by relational databases or other back-end data
sources.

The following figure shows a multi-tiered environment:

End users interact with client software, typically a web browser, to use the
application.

• When a request originates from a web browser, it is sent to the web server.
Assuming the request requires application processing or data access, the
web server forwards the request to Netscape Application Server (NAS).

• When a request originates from a CORBA client, it is sent to NAS by way of
an RMI/IIOP link. (An RMI/IIOP-based product will be shipped in the next
generation of iAS 6.0.)

NAS handles requests by running the appropriate application code (and
accessing data sources if needed). NAS returns the results to the web server,
which in turn forwards the reply back to the client.

Web browsers

Web servers Application serversRich clients

Databases

Enterprise
applications

Legacy systems

RMI/IIOP

HTTP
14 Getting Started Guide

Product Components
For more information about the components and interactions in the multitier
environment, see the Programmer’s Guide.

Product Components
This section describes the software and product components of NAS. This
section consists of the following topics:

• Programming APIs

• System Services and Application Services

• Sample Applications

• NAS Administrator

• NAS Deployment Manager

• Netscape Directory Server

Programming APIs

NAS supports several industry-standard Java APIs. In particular, NAS supports
the APIs and technologies as defined by the following specifications:

• Java Servlet 2.1 API Specification

• Enterprise JavaBeans 1.0 Specification

• JavaServer Pages 0.92 Specification

• JDBC 2.0 Core API Specification

• JDBC 2.0 Standard Extensions Specification

Note that NAS 4.0 provides full support for JDBC 1.0 and partial support for
JDBC 2.0. The supported JDBC 2.0 functionality is described in the
Programmer’s Guide (Java).

For building application components written in C++, NAS provides the
Foundation Class Library. Java application developers can also use the NAS
Foundation Class Library to leverage additional capabilities of NAS that are not
supported through standard APIs.

For more information about the NAS Foundation Class Library, see the
Programmer’s Guide or the Netscape Application Server Foundation Class
Reference. Both of these documents are available in Java or C++ versions.
Product Overview 15

Product Components
For more information about the industry-standard Java APIs that are supported
in NAS 4.0, see the appropriate API specification. All specifications are
accessible from installdir/nas/docs/index.htm, where installdir
is the location in which you installed NAS.

System Services and Application
Services

System and application services provide a variety of application-level
capabilities and system-level capabilities. These services enable the
development, deployment, and management of complex business-logic and
transaction-based applications.

For more information about these services, see the Overview Guide.

Sample Applications

NAS includes sample web-based applications, enabling you to more quickly
learn techniques for developing and deploying applications in a NAS
environment.

One sample presents a bookstore application that simulates browsing,
searching, and ordering books online. This Java application demonstrates the
NAS application model that uses industry-standard components such as
servlets, JavaServer Pages, Enterprise JavaBeans, and data access with JDBC.
For information about installing or using the online bookstore application, see
the Installation Guide or the Programmer’s Guide (Java).

Another sample presents a banking application that simulates a user session
with an online account. This sample demonstrates techniques for migrating
existing applications to comply with the industry-standard Java application
model. For information about installing the bank application, see the
Installation Guide. For details about the application code, see the Migration
Guide.
16 Getting Started Guide

Product Components
NAS Administrator

NAS Administrator is a GUI tool that contains several smaller tools for managing
one or more NAS machines or applications. For more information, see the
“Management Capabilies” section in this guide. For detailed information about
using NAS Administrator, see the Administration Guide.

NAS Deployment Manager

An application must be deployed before it can be used, and NAS Deployment
Manager is a GUI tool that makes application deployment easier. You access
this tool either from NAS Administrator or from Netscape Application Builder.

When you deploy an application, NAS Deployment Manager installs all the
application’s files and registers all of its components on the destination server
(a server on which NAS has been installed).

For information about using NAS Deployment Manager to deploy applications,
see the Administration Guide.

Netscape Directory Server

Netscape Directory Server provides a comprehensive, enterprise-wide directory
service for managing information about users, groups, and access control lists.
NAS 4.0 includes Netscape Directory Server 4.0, which supports versions 2 and
3 of the Lightweight Directory Access Protocol (LDAP).

For more information, see the NAS Deployment Guide. In addition, consult the
Installation Guide for Netscape Directory Server 4.0.

Features

This section describes the key features of Netscape Application Server.

This section contains the following topics:

• Rapid Application Development
Product Overview 17

Product Components
• High Scalability

• High Performance

• High Availability

• Session and State Management

• Security

• Management Capabilities
18 Getting Started Guide

Rapid Application Development
Rapid Application Development
NAS enables rapid development of enterprise applications through the
following features, which are described in this section:

• a multi-tier application model.

• core services for building high-performance, scalable, transactional
applications.

• support for a variety of application development tools.

Application Model

An application model is the conceptual division of a software application into
functional components. The NAS application model promotes code reusability
and faster application deployment.

The NAS application model divides an application into multiple layers:
presentation, business logic, and data access. Presentation is further separated
to distinguish page layout and presentation logic. Data access refers to both
databases and other data sources.

The NAS application model is component-oriented. For Java applications, the
application model has been enhanced. The model now incorporates standard
components based on Java technologies.

The following table lists the main components that make up the functions of an
application in the NAS environment:

Functionality in Application
Model

Application Components

Java Applications C++ Applications

Presentation logic servlets AppLogics

Page layout JavaServer Pages HTML templates

Business logic Enterprise JavaBeans AppLogics

Database access Enterprise JavaBeans
using JDBC; query files

AppLogics using the
NAS API; query files

Access to other data sources Extensions Extensions
Product Overview 19

Rapid Application Development
These application component fall into two categories:

• Industry-Standard Components

• Other Components

Industry-Standard Components

For developing Java applications, we recommend that you use standard
components whenever possible. These standards-based components include
servlets, JavaServer Pages (JSPs), and Enterprise JavaBeans (EJBs), described as
follows:

• Servlets are Java classes that define page logic and page navigation. Servlets
also support the creation or invocation of business components.

• JSPs are web browser pages written in a combination of HTML, JSP tags,
and Java.

• EJBs encapsulate an application’s business rules and business entities.

In addition, application components can invoke JDBC calls. JDBC is a standard
API for database connectivity.

For more information about using these standard components in NAS
applications, see the Programmer’s Guide (Java).

Other Components

Other application components include AppLogics, HTML templates, query files,
and extensions. An application must use these components if it is written in
C++ or if it will run in the NAS 2.x environment. And if your application must
access propriety enterprise data sources, you may need to use prebuilt
extensions or create your own.

• An AppLogic is a set of programming instructions, written in C++ or Java,
that perform a well-defined, modular task within an application.

• HTML templates are text files that merge HTML with dynamic data to
produce formatted output. Templates use special markup tags called GX
tags.

• Query files are text files that contain SQL commands, such as for querying
or updating a database.
20 Getting Started Guide

Rapid Application Development
• Extensions enable business logic components to connect to custom or
proprietary enterprise resources. Extensions are persistent modules, written
in C++ or Java, that are dynamically loaded into NAS and are accessed by
multiple AppLogics or EJBs over the life of the extension.

— Ready-to-use extensions are provided as part of NAS Integration
Solutions. NAS Integration Solutions are available for MQSeries, Tuxedo,
CICS, IMS, and R/3 applications. These applications can be easily
integrated with applications deployed on NAS.

— Developers can create their own custom extensions using Netscape
Extension Builder, a separately packaged, GUI-based tool that integrates
with NAS.

For more information about AppLogics, HTML templates, and query files, see
the Programmer’s Guide (C++) or the Migration Guide. For more information
about extensions, consult your Netscape Extension Builder documentation.

Core Services

NAS provides a set of application services and system services for building,
deploying, and managing high-performance, scalable, transactional
applications. These services include built-in state and session management,
request and transaction management, results caching, connection caching, and
so on.

For more information about these services, see the Overview Guide.

A Choice of Tools

Netscape Application Server supports applications written in either Java or C++.
However, Java applications are easier to develop and maintain, because they
can take advantage of the enhanced, standards-based application model.

Application developers can choose from among various tools to build
applications. These tools can range from simple text editors, to visual Java
editors and visual HTML editors, to integrated development environments
(IDEs).
Product Overview 21

High Scalability
Netscape’s tools include Netscape Application Builder and Netscape Extension
Builder. These tools are tightly integrated with NAS but are packaged
separately.

• Netscape Application Builder is used for building applications and
deploying them on NAS. Netscape Application Builder also interoperates
with third-party tools such as Symantec Visual Cafe.

• Netscape Extension Builder is used for designing and building custom
extensions.

High Scalability
Netscape Application Server has a scalable architecture. This means that
applications built to meet the needs of initial deployment can adapt as these
business needs grow.

Application scaling is accomplished in two main ways: either by adding more
servers to a cluster of servers, or by adding more CPUs to a multi-CPU system.
Application logic can then be deployed to the new servers. Developers do not
need to change any application logic as the user base grows.

In addition, application tasks can be assigned to the server best able to process
the request efficiently. This is accomplished either through application
partitioning or through dynamic load balancing.

Application Partitioning

The Netscape Application Server architecture supports application partitioning,
which allows logic to be distributed across servers as an application scales to
accommodate heavier loads. Using Netscape Application Server Administrator,
system administrators can partition an application into functional areas.

For example, in an online catalog application, the application logic for order
processing, inventory management, and checkout processing can reside on
different servers. Regardless of how applications are partitioned and distributed,
the application functions as a single, cohesive unit.
22 Getting Started Guide

High Scalability
Application logic can also be grouped where each group consists of related
operations. For example, a group might contain all logic associated with order
processing. Each application component can belong to one or more groups.
Applications can also share application logic.

System administrators can deploy these groups of application logic objects
locally or globally across application servers in the following ways:

• Portions of an application might uniquely reside on different Netscape
Application Servers, yet still run as a single application. In this way,
application logic can be stored on the server that can run it most efficiently.
For example, data-intensive application logic can be run on the server that
is closest to the data source to avoid latencies associated with accessing
remotely located data.

• For load-balanced applications, the same group of application logic objects
can be stored on multiple servers. This allows an application to run the
application logic more efficiently on the server with the most available
resources.

• Applications might dynamically share certain application logic objects. For
example, all applications in a network might share the same application
logic for user login and authentication, or for credit card authorization.

Application partitioning gives system administrators tremendous flexibility to
scale and tune the performance of applications. In addition, having application
components stored on multiple servers helps ensure high application
availability in the event of a server shutdown.

Dynamic Load Balancing

Netscape Application Server supports dynamic load balancing to provide
optimal performance levels under heavy loads. With load balancing enabled,
the Netscape Application Server can direct certain requests to be run on an
available server instead of waiting for a busy server to become available. If one
server is overburdened, another can take its place to process the request. The
Load Monitor tabulates information on server resource availability.

To use load balancing, application logic must be partitioned across all Netscape
Application Servers that might process the application logic at run time. System
administrators must determine if an entire application or specific parts of an
application should be load balanced.
Product Overview 23

High Performance
For optimal performance and resource utilization, system administrators can
deploy application logic on servers that are best configured to handle execution
of that logic. Each Netscape Application Server has its own load balancing
module which determines the optimal server to process an incoming request.

Partitioning characteristics are dynamically known to all servers in the cluster.
Netscape Application Servers regularly update their load statistics and broadcast
them to other Netscape Application Servers in the cluster. Based on load
balancing factors, requests are dynamically routed to servers. Load balancing
factors are configured using Netscape Application Server Administrator.

High Performance
Netscape Application Server is a high performance, multi-threaded, and multi-
processing application server. NAS can handle a high number of concurrent
requests, database connections, and sessions, and provides high performance
even under heavy loads.

NAS delivers high performance between web servers, other NAS machines, and
heterogeneous back-end data sources through the following features:

• Database Connection Caching

• Result Caching

• Data Streaming

• Multi-threaded Capabilities

• Optimized Communication with Web Servers

Aside from the application server, other factors affecting application
performance include network topology, network and server hardware,
database architecture, and application programming.
24 Getting Started Guide

High Performance
Database Connection Caching

To improve performance, the Netscape Application Server caches database
connections so that commonly used, existing connections are re-used rather
than re-established each time. Connection caching avoids the overhead
involved in creating a new database connection for each request.

Application developers can enable database connection caching in their
application logic. At run time, when a request creates a new connection to a
database, Netscape Application Server stores the connection in the cache.
When the request has completed using the connection, the connection is
marked as free in the cache. If a new request is made to the same database by
the same user, Netscape Application Server can first check the cache and use
an existing free connection rather than creating a new one. If the freed
connection remains unused after a specified time-out period, it is released by
the server.

System administrators can use the Netscape Application Server Administrator to
specify server-wide settings for database connection caching, such as the initial
number of slots in the cache and the time-out limit for free connections, and so
on.

Using Netscape Application Server Administrator, system administrators can
monitor server performance and tune the number of available connections in
the cache. This ensures an optimal ratio of cached connections to system
resources.

Result Caching

Netscape Application Server improves application performance by caching the
results of application logic execution. Developers can optionally enable this
feature in their applications.

If caching is enabled, Netscape Application Server saves the application logic’s
input parameters and results in the cache. The next time the Netscape
Application Server executes the same request, the server can first check the
cache to determine whether the input parameters match the cached input
parameters. If they match, the server retrieves the results from the cache instead
Product Overview 25

High Performance
of executing the request again. Result caching is especially effective for large
data requests that involve lengthy processing time and for frequently accessed
application logic.

Data Streaming

Netscape Application Server provides data streaming facilities. Streaming
improves performance by allowing users to begin viewing results of requests
sooner, rather than waiting until the complete operation has been processed.
Application developers can explicitly control what data is streamed, or allow
the system to provide automatic streaming.

Streaming is especially useful for large data sets involving lengthy queries. For
example, suppose a user requests a price list containing 10,000 items. The
application can process the query and display items to the user as they become
available, for example, 40 at a time (or one full page view), rather than wait
until all 10,000 items have been retrieved from the database.

Multi-threaded Capabilities

Netscape Application Server supports the multi-threading capabilities of the
host operating system. An application can optimize performance by processing
requests on multiple threads, which maximizes CPU resource utilization.

Application developers automatically take advantage of multi-threading in their
applications. In addition, developers can run database operations such as
queries, inserts, updates, deletes, and so on, asynchronously. Asynchronous
operations allow an application to do other work while a time-consuming
operation, such as a large query, runs in the background.

System administrators can use Netscape Application Server Administrator tool to
specify settings for multi-threading, such as the following:

• minimum and maximum number of threads to handle all requests

• minimum and maximum number of threads to handle asynchronous
database requests.

Typically, administrators will monitor server performance and tune the number
of available threads to achieve an optimal ratio of threads to system resources.
26 Getting Started Guide

High Availability
Optimized Communication with Web
Servers

Netscape Application Server optimizes application performance through tighter
integration with web servers. This integration occurs using Web Connector
Plug-ins and corresponding Listeners. Netscape Application Server supports
NSAPI, ISAPI, and optimized CGI for Netscape, Microsoft, and CGI-compatible
Web servers, respectively.

High Availability
Many enterprise applications must be accessible (available) to users 24 hours a
day, 7 days a week. Netscape Application Server provides a highly available
and reliable solution through the use of load balancing and dynamic failover
(also called failure recovery).

NAS enables you to distribute all or part of an application across multiple
servers. As a result, if one server goes down, the other servers can continue to
handle requests.

NAS minimizes downtime by providing automatic application restarting. In
addition, NAS maintains and replicates distributed user-session information and
distributed application-state information. Information is maintained as long as
more than one NAS installation is running in a cluster with the server that
crashed.

Developers need not be concerned with building recovery and scalability
features into their application. The application inherits these features simply by
being hosted on the runtime environment.

For more information about load balancing and failure recovery, see the
Overview Guide, the Administration Guide or the Deployment Guide.
Product Overview 27

Session and State Management
Session and State Management
Netscape Application Server supports state and session management
capabilities required for web-based applications. NAS provides a number of
classes and interfaces that application developers can use to maintain state and
user session information.

State and session information is stored on each server in a distributed
environment. For example, an application can display a login screen, prompt
users to enter their user name and password, then save this information in a
session object. Thereafter, the application uses this same information to log in
to multiple databases without prompting the user to type it in again.

Similarly, in an online shopping application, a session object can store a list of
products selected for purchase (such as quantity, price, and so on) and
persistent variables (such as running order totals).

State and session management is especially important for applications that have
complex, multi-step operations. In an environment where application logic is
partitioned across different servers, system administrators can use the Netscape
Application Server Administrator to optionally designate a single server to act as
the central repository for all state information.

For more information about session and state management, see the
Programmer’s Guide.

Security
Netscape Directory Server provides NAS applications with data security by
using access control lists, Secure Sockets Layer (SSL), and password policies.

In addition, NAS provides secure web server communication and supports SSL,
HTTPS, and HTTP challenge-response authentication. To bridge the security
gap between browsers and data sources, NAS supports user authentication,
cookies, and database access controls for the secure handling of transactional
operations. Event logging and tracking enables detection of, and protection
against, unauthorized access.
28 Getting Started Guide

Management Capabilities
User Authentication

NAS Administrator and Netscape Directory Server provide facilities to enable
user authentication to ensure that only authorized users can access
applications, databases, and directories.

Server administrators can use the security tool of the Administrator to create
users, groups, and roles to manage access to specified resources.

Access Controls to Data Sources

Netscape Application Server works within the framework of existing access
controls for relational database management systems. A user or application
must log into the database before gaining access to the data.

Developers can write applications so that users enter login information only
once and the application saves the information in a session object. Thereafter,
the application uses the initial login information to log into different databases,
as needed, in the background without requiring additional user input.

Netscape Application Server shields back-end data by acting as a secure
gatekeeper between the web server and the relational database system.

Management Capabilities
Netscape Application Server eases application management by providing
integrated management facilities. These facilities include the following:

• Netscape Application Server Administrator

• Netscape Directory Server

• Support for Third-Party Management Tools
Product Overview 29

Management Capabilities
Netscape Application Server
Administrator

Netscape Application Server (NAS) Administrator is a Java application with a
graphical user interface. NAS Administrator enables the following capabilities:

• remote management of multiple servers and distributed applications.

• dynamic deployment and scaling of applications.

• performance tuning and optimization of the server environment.

Management and tuning involves tasks such as adjusting database connection
threads, adjusting load-balancing parameters, configuring web servers, and
managing access control lists (ACLs).

Additional features of NAS Administrator include:

• Dynamic Application Management

• Event Logging and Failure Analysis

Dynamic Application Management
Netscape Application Server’s architecture allows partitioned applications to run
even if one or more servers fail. In a load-balanced server configuration,
application logic can be replicated on multiple servers. If a server fails, the load
balancing module dynamically directs requests to other available servers, thus
preventing application-wide failure.

Because the NAS architecture promotes high availability of applications, server
administrators can use NAS Administrator to perform a variety of tasks in real
time, without interrupting an application’s operation. These tasks include:

• monitoring, reconfiguring, or replacing servers.

• swapping out or updating application components.
30 Getting Started Guide

Management Capabilities
Event Logging and Failure Analysis

Netscape Application Server provides facilities for logging requests from Web
servers and logging system-level and application-level events on Netscape
Application Servers. For deployed applications, system administrators can use
contemporaneous logs to assist with failure analysis and to detect attempted
security breaches.

Event logging occurs in multiple ways on the Netscape Application Server:

• Application developers can enable logging in their application logic to assist
with failure analysis. For example, an application can log messages like
“Transaction succeeded” or “Transaction failed” depending on conditions
and events at run-time.

• System administrators can enable automatic event logging to record the
messages generated by dynamically loadable modules (DLMs) and
application execution.

• System administrators can enable HTTP request logging to record and
monitor the requests received by a Web server. Administrators can specify
brief, normal, or detailed logging. If logging is enabled, Netscape
Application Server logs information about the HTTP requests to a specified
target database. Administrators can then analyze the logs, generate custom
reports, and so on. HTTP request logging requires NSAPI or ISAPI Web
Connectors.

Netscape Directory Server

Netscape Directory Server, which is packaged with NAS, is Netscape’s
implementation of the Lightweight Directory Access Protocol (LDAP). NAS uses
Netscape Directory Server not only to store NAS configuration data but also as a
central repository for user and group information. A single Netscape Directory
Server can support multiple instances of NAS—up to five clusters, in fact. This
means that administrative data for all NAS installations can be centralized in one
place.

The NAS Administrator acts as an LDAP client and can access information about
users and groups. As a result of this integration with LDAP, NAS provides
unified management of users, groups, and ACLs across the enterprise.
Product Overview 31

Management Capabilities
Support for Third-Party Management
Tools

NAS provides the ability to be monitored and managed via SNMP agents. SNMP
is a protocol used to exchange data about network activity.

NAS stores variables pertaining to network management in a tree-like hierarchy
known as the server’s management information base (MIB). Through this MIB,
NAS exposes key management information to third-party tools that run SNMP.
As a result, NAS can integrate with an enterprise’s server management tools,
thereby allowing other solutions for remote administration.
32 Getting Started Guide

C h a p t e r

2
Chapter 2Installing NAS on Solaris 8
This chapter explains how to install Netscape Application Server (NAS) on the
Unix platform using the quick installation script. After installation you can start
developing applications on your own. This chapter includes the following
topics:

• About Installing NAS

• Checking Software Requirements

• Running the Quick Installation Script

• Verifying Installation

Note If you wish to use the standard product installation script as detailed in the
Installation Guide, please contact your sales representative to obtain a product
key or call our sales office at 888.786.8111. You will not be able to proceed
with standard installation without a key.

About Installing NAS
If you are new to the Netscape Application Server, this evaluation version
includes a quick installation program to get you up and running on NAS
quickly and easily. In addition, a number of sample applications have been
 Installing NAS on Solaris 8 33

Checking Software Requirements
provided to assist you in your exploration of the server. These applications will
help you to learn about the various components available to you when
developing a new application.

For those already familiar with the Netscape Application Server, the standard
installation as defined in the Installation Guide can be used in place of the
quick installation.

Checking Software Requirements
Before running the quick installation script, verify the following:

• iPlanet Web Server 4.0 is installed on the system. See the iPlanet Web Server
Installation Guide.

• Oracle 8.0.5 client library is installed on the system and Oracle database
environment variables are set. Though the Oracle 8.0.5 client libraries are
required, the Oracle 8.0.5 server or later can be used for the Oracle server
itself. This is necessary for the operation of the Online Bookstore and
online bank sample applications.

You should verify that you can connect to the Oracle server from the
application server machine by using an Oracle utility such as sqlplus.
This will ensure that the basic Oracle networking environment is
functioning properly.

Note If you do not have Oracle installed on the system, you can still run the quick
installation script and perform a basic evaluation of the Netscape Application
Server. The “Fortune” sample application as described in Chapter 3, “Using the
Sample Applications” can be used to verify the installation.

Running the Quick Installation Script
Log on to the system as the same user (or as a member of the same group) that
installed the iPlanet Web Server with which your Netscape Application Server
will interface. If you install as a regular user, and elect to configure the
Netscape Application Server for automatic startup, you will have to log on again
as the root user after you install to enable automatic startup.
34 Getting Started Guide

Running the Quick Installation Script
Note iPlanet Web Server 4.0, iPlanet Directory Server 4.0, and NAS 4.0 SP2 will all be
installed on the same machine. Futhermore, NAS will install and use its own
copy of the directory server. It will not use existing directory servers, if any.

To install Netscape Application Server 4.0 SP2

The following steps can be performed as root user. Before proceeding with this
installation, you should uninstall any previous installations of NAS.

1. Ensure that the ORACLE_HOME environment variable is set appropriately.
If it is not set to the appropriate directory then the installation will appear
successful but NAS will be unable to access the database while running the
sample application.

2. Insert the Solaris 8 CD-ROM into the CD-ROM drive and mount the
CD-ROM on, for example, /cdrom/cdrom0.

3. At the shell prompt, run the following command:

cd /cdrom/cdrom0/NAS/NAS4.0

4. Execute the installation script by typing the following:

./quick_install

You are then prompted to specify the following information.

5. Specify a target installation directory as the base directory within which all
NAS components are installed (includes both NAS and the directory server).
Do not include spaces in the path name. The default location is:

“/usr/netscape/server4”

6. Specify the full path for the Web server instance. No default value is set.
You will not be able to continue until a path is specified.

The full path for the Web server instance is the root directory where iPlanet
Web Server (iWS) is installed plus the https subdirectory for your server
name. For example, your iWS installation directory is
/usr/netscape/server4 and your Web server instance name is
myiws. The full path for your Web server instance is then /usr/
netscape/server4/https-myiws.<your domain name>.com
Installing NAS on Solaris 8 35

Verify Web Server Configuration
7. Specify an Administrator’s password. Your user name / password
combination will be used to administer NAS via the Netscape Application
Server Administration (NASA) console. The default administrator’s name is
set to “admin.” The default password is “changeit”.

Verify Web Server Configuration
Once you’ve finished the installation you’ll need to ensure that the web server
process is running with the same Solaris user ID as NAS. For Example, if NAS
was installed with the root user ID, the web server process must also use the
root user ID. To verify that the web server is using the same ID, type:

ps -ef | grep httpd

then look for your web server instance. If it is not using the same user ID as the
application server, you can change it by using the web server administration
console.

If you need to change the Web Server user ID:

1. Access the web server administration console via the appropriate URL.

2. Select “View Server Settings”

3. Edit the “User” entry located under “Technical Settings”

Next, you’ll need to update and restart your webserver. During the installion of
NAS, changes were made to the web server’s configuration file. So, you’ll need
to apply these changes thru the web server administration console and then
restart the web server.

Verifying Installation
You can use the “Java Fortune” sample application installed with NAS to verify
your installation. This servlet based application will return a unique fortune to
the user each time he/she clicks the reload button on the browser. This servlet
does not rely on a back-end database.
36 Getting Started Guide

Verifying Installation
To verify installation:

1. Open Netscape Navigator, enter the following URL, and press Enter:

http://yourwebserver:portnumber/GXApp/index.html

2. Click the link for the Java Fortune sample application.

The sample application returns a fortune. Click the browser’s reload button
to see a new fortune.

Note The Netscape Application Server Administrator (NASA) console can be started
and used to manage your NAS runtime environment. As noted in the quick
installation procedure, your user name is set to “admin” by default and your
password is set to “changeit” by default, unless you specified otherwise during
your installation. For more information on this tool and its features, see the
Administration Guide.
Installing NAS on Solaris 8 37

Verifying Installation
38 Getting Started Guide

C h a p t e r

3
Chapter 3Using the Sample Applications
A number of sample applications have been provided to assist you in your
exploration of the server. These applications will help you learn about the
various components available to you when developing a new application.
Once you have installed Netscape Application Server and your database servers
and clients, you can use the sample applications to ensure that the server is
working properly and as a guide for developing your own applications. This
chapter covers the Online Bookstore application. For information about the
other sample applications installed with NAS, see the Installation Guide and
Programmer’s Guide.

The Online Bookstore application discussed in this section demonstrates the
J2EE oriented programming model and its implementation of the following
technologies: EJBs, servlets, JSP, JDBC, and transaction manager. Note that this
sample application requires the Oracle 8.0.5 client library to run as described
on page 34.

It is recommended that you first run the Fortune application to test that NAS
has been installed properly (see “Verify Web Server Configuration” on
page 36). Then, after verifying that the server is installed properly, run the
Online Bookstore application to understand the NAS 4.0 programming model
and its implementation of servlets, JSPs, EJBs, JDBC, and transaction manager.

In the instructions that follow, nas install directory refers to the
directory where you have installed NAS.
 Using the Sample Applications 39

Online Bookstore Sample Application

This section explains how to configure the Online Bookstore sample
application.

Note The quick installation described in Chapter 2, “Installing NAS on Solaris 8”
configures NAS for Oracle 8.0.5 client libraries. However, DB2 and Sysbase
client libraries are also supported by NAS. For more information regarding the
use of these client libraries, refer to the Installation Guide and the
Programmer’s Guide.

Configuring the Oracle Database

You should ensure that you have an Oracle user defined for the sample
application. You can use either an existing Oracle user or define a new Oracle
user for the sample application.

To define a new Oracle user:

1. Use SQL Plus to define an Oracle user name (e.g. “kdemo”).

SQL > create user kdemo identified by kdemo;

Where the first “kdemo” is the user name and the second “kdemo” is the
password.

2. Grant connect, resource, and dba privledges to the “kdemo” Oracle user.

SQL> grant connect, resource, dba to kdemo identified
by kdemo;

To create and populate the sample database tables:

A shell script named setup_ora.sh configures the database tables, populates
the tables with sample data and updates the NAS registry with database
information to support the Online Bookstore sample application.

The setup_ora.sh script performs the following steps:

1. Registers the datasource in the NAS registry.

2. Uses SQL Plus to test access to the Oracle database.

3. Creates and populates the sample tables, if the access test is successful.
40 Getting Started Guide

To run the script, follow these steps:

1. Ensure that the ORACLE_HOME environment variable is set appropriately.

2. From the <nas install directory>/APPS/nsOnlineBookstore/
database directory, run setup_ora.sh with the following
arguments:

setup_ora.sh <DataSource> <Database> <DBuser>
<DBpassword> <ResourceManagerName>

For example:

setup_ora.sh ksample ORCL kdemo kdemo rm1

Where:

DataSource is the Oracle service or TNS name which maps to the
appropriate Oracle database instance. In the example above, “ksample” is
the Oracle service or TNS name. (This assumes that the Oracle client has
been configured to recognize “ksample” as a valid Oracles service/TNS
name.)

Database is the Oracle SID of the target database.

DBUser and DBpassword are the Oracle user name and password under
which the tables will be created and populated. These are also the values
that will be used by the sample application to access the Oracle database.

ResourceManagerName is a dummy value that must be supplied, but is
not currently used the by the sample application (e.g. rm1)

Cleanup Resource Manager Entry in NAS Registry

Due to a bug in the setup of the sample application, a distributed transaction
resource manager entry is added to the NAS registry. Before running the Online
Bookstore application, you must remove this entry from the NAS registry.
Using the Sample Applications 41

To cleanup resource manager entry in NAS registry:

1. Run $(NAS_INSTALL)/nas/bin/kregedit

2. Locate the registry key \\SOFTWARE\Netscape\Application
Server\4.0\DataSource\nsOnlineBookstoreDS\Resource

Manager=rm1

Where rm1 is the ResourceManager name you specified when you created
the database tables.

3. Select the ResourceManager registry key and choose Edit > Delete from the
pull-down menu at the top banner.

4. Exit from kregedit.

5. Restart NAS.

1. Use the following command to stop NAS:

$(NAS_INSTALL)/nas/bin/KIVAes.sh stop

2. Use the following command to start NAS.

KIVAes.sh start

Creating a Group and a User in the Directory Server

The sample application has two primary features: the ability to purchase books
from the bookstore and the ability to manage the bookstore from the manager’s
office. To manage the bookstore, you must create a user with special privileges.
Because the sample application takes advantage of LDAP integration, any user
you create is verified by the Directory Server configured with NAS. Therefore
you must create this user on Directory Server.

1. Start the Netscape Console.

/usr/netscape/server4/startconsole

2. Enter the Console Administrator user ID and password. As noted in the
quick installation procedure, the default user name and password are
“admin” and “changeit”.
42 Getting Started Guide

3. Click the “Users and Groups” tab.

4. Choose New User in the drop-down list on the lower right portion of the
panel and click Create.

5. In the "Select Organizational Unit" dialog, select People and click OK.

6. Enter the name, user ID, and password for the user you want to create and
click OK. (For example, you could choose to set your user name and
password to be “bookmgr” and “bookmgr”).

7. Click the "Users and Groups" tab.

8. Choose New Group in the drop-down list on the lower right portion of the
panel and click Create.

9. In the "Select Organizational Unit" dialog, select Groups and click OK.

10. Under Create Group, enter the name of the Group you want to create, for
example: BookAdmin. If the group already exists, go to Step 11.

11. Click the Members tab and then click Add.

12. Click Users and then click Search.

13. Choose the name of the user you created in Step 6 and click OK.

14. Exit from the console.

15. If you created a group other than the one named “BookAdmin” in Step 10,
do the following:

1. Open the file nas install directory/APPS/GXApp/
nsOnlineBookstore/ldap/ldapInfo.properties

2. Add the following line in the file: ADMIN_GROUP_DN = cn=name of
group created in Step 10, ou=Group, o=mcom.com

3. Save the file.

The user you created is stored on the Directory Server with which this NAS
installation is configured. Whenever you administer the application, this user is
verified by the Directory Server.
Using the Sample Applications 43

Running the Sample Application

To run the sample applications on a NAS installation that includes the Web
Connector plug-in, run the sample.sh script. Then click the link for the
sample application.

To run the sample applications on a NAS installation that does not include the
Web Connector plug-in, do the following:

1. Ensure that NAS is running.

If you’re not sure if NAS is running, perform the following steps:

1. Stop NAS:

$(NAS_INSTALL)/nas/bin/KIVAes.sh stop

2. Start NAS:

KIVAes.sh start

2. Open Netscape Navigator, enter the following URL, and press Enter:

http://yourwebserver:portnumber/GXApp/index.html

3. Click the link for Java Online Bookstore

Once the Online Bookstore application is up and running you can enter the
bookstore in one of two ways -- as a customer or as a manager.

Entering the Bookstore as a Customer

To enter the bookstore as a customer, click the Store Entrance image on the left
portion of the page. There you will find the shopping area of the application.
You will have the option of placing an order as a new customer or as a
customer who has visited the site before.

If you choose to place an order as a new customer, simply go through the
process of buying a book. When you are ready to check out, you will be
prompted to register as a new customer.
44 Getting Started Guide

Updating the Sample Application
If instead, you would like to go through the shopping experience as a pre-
existing customer, you can use one of the pre-defined user names and
passwords provided with this installation.

To purchase a book as a pre-existing customer do the following:

1. When prompted for the use name type:

user<#>@mycorp.com

where <#> is any number from 1 to 10.

2. When prompted for the password type:

user

Entering the Bookstore as a Manager

To enter the bookstore as a manager, click the Manager’s Office image on the
right portion of the page. There you will find the administration area of the
application. Use the user name and password that you added to the directory
server earlier (e.g. “bookmgr”, “bookmgr”) to authenticate yourself.

As the manager, you will see a list of customers and the orders they have
placed. However, if you have not walked through the shopping experience as a
customer, you will not see any book orders when you enter the Manager’s
Office, since no orders have been placed.

For more detailed information regarding the Online Bookstore sample
application, refer to the NAS Programmer’s Guide.

Updating the Sample Application
If you change any of the source files of the Online Bookstore application after
installing and configuring it, you must invoke the defaults.mak file, located
in <nas install directory>/APPS/GXApp/nsOnlineBookstore/
src, to rebuild the sample application.

To invoke the makefile, which includes defaults.mak, type the following
command at the prompt:

make -f makefile
Using the Sample Applications 45

Updating the Sample Application
If you want to update source files in a particular directory, run the makefile
located in that directory.
46 Getting Started Guide

C h a p t e r

4
Chapter 4Developing Applications
This chapter describes the relationships between files used in creating
applications to run on the Netscape Application Server. In addition, this
chapter describes in detail the Online Bookstore sample application.

The following topics are described in this chapter section:

• Relationships between files

— Parts of an Application

— Assembling the Pieces

— Getting Started

• Online bookstore sample application description

— Inside the Online Bookstore Sample Application

— Presentation Flow

— Directory Structure

— Servlets

— EJB Functionality
Chapter 4, Developing Applications 47

Parts of an Application
Parts of an Application
In the Netscape Application Server environment, an application can contain
three types of programming layers. As the developer, you use or create objects
to deliver each specific layer, as listed in the following table:

The relationships among the objects which represent the various application
layers are shown in the following figure and are explained in the three sections
that follow.

Application Layer Objects Used

Data access layer Query files, data models, and JDBC RowSet classes

Presentation layer Java servlets for the presentation logic; JavaServer Pages
and HTML files for the presentation layout.

Business layer Enterprise Java Beans

Data Sources Data Sources

Request

Request

Response

NAS Application

Java
Server
Pages

EJBsJDBC calls

HTML
Page
or
JSP

HTML
Page
or
JSP Servlets

Data Sources

Servlets use
data models
and query files
to access data
stored in data
sources via
EJBs and
JDBC RowSet
calls
48 Getting Started Guide

Parts of an Application
Data Access Layer

Data access logic determines what types of back-end data sources (if any) the
application accesses, such as a relational database or a legacy system. In this
guide, it is assumed that a data source already exists for use with your
application, and that there is someone at your site, such as a database
administrator, who manages it. Netscape Application Builder enables you to
access your data sources via data models and data access query files.

To legacy systems, your code may need to call into an extension. Netscape
Application Server includes prebuilt extensions. These extensions allow an
application to communicate with transaction-processing systems such as CICS/
IMS, IBM MQ Series, and BEA Tuxedo. Additional prebuilt extensions allow
communication with ERP systems such as SAP R/3. If you need to create a
custom extension, use Netscape Extension Builder.

Relational Data Sources

If the application accesses a relational database, you use queries to access the
data. To use a query, create two types of files:

• a data model, which specifies the database tables and relationships used
by the application.

• a query file, which contains one or more queries, each of which defines a
single interaction with a relational database.

You cannot create a query without a data model. Every query file depends on a
data model, but not necessarily the same data model. A query can be loaded
into a NASRowSet object.

Nonrelational Data Sources

If the application is required to access a nonrelational data source, you must
write Java code to communicate with the data source. In some cases, you can
call into an extension that is prebuilt into Netscape Application Server. In other
cases, you may want to build a custom extension using Netscape Extension
Builder, another product in the NAS product line.
Chapter 4, Developing Applications 49

Parts of an Application
Presentation Layer

The presentation layer handles the presentation logic and layout of the
application. The following sections introduce these concepts.

About Presentation Logic

Presentation logic controls and processes the data generated from application
users by invoking Enterprise JavaBeans to perform business logic functions,
and then generating a dynamic page that sets up the next user interaction.
Presentation logic is processed by servlets on the Netscape Application Server.
Servlets handle such tasks as page-to-page navigation, session management,
simple input validation, and the tying together of business logic.

About Presentation Layout

Presentation layout determines how users experience the application.
Typically they use a web browser and navigate from page to page (HTML
pages or JavaServer Pages). For example, suppose a user is viewing the left
web page in the previous figure. As a result of a user action, such as pressing a
Submit button, the web browser displays the page on the right. The intervening
processing remains transparent to the user.

Business Logic Layer

Business logic maintains the application-specific processing and business rules
of an application.

The application components designed for your business logic connect the
components designed for the presentation layer (servlets, HTML pages, and
JavaServer Pages) to the components designed to implement the data access
layer (data models, queries, and JDBC RowSet calls).

Enterprise JavaBeans

In the Netscape application model, you design session and entity EJBs to
implement the various types of business logic, such as transactions, security,
and remote access.
50 Getting Started Guide

Assembling the Pieces
Assembling the Pieces
To create an application, you assemble files that execute the presentation logic,
business logic, and data access logic that the application requires. Assembling
files means either creating new files or locating existing files to add to a project,
which is a container for your files during development. A project also lists the
files you will deploy as an application, after development is completed.

Types of Files in a Project

In developing an application, you assemble the following types of files:

How Files Relate to Each Other

The files in a project are related as follows:

• HTML pages and JavaServer Pages (JSPs) contain the web content. In
addition to entering formatted text, you can insert links to image files. You
also design HTML pages and JSPs that call JavaScript, Enterprise JavaBeans,
and servlets.

File Description File Suffix

HTML pages and templates .html, .htm

JavaServer Pages .jsp

JavaScript .js

Image files .gif, .jpg, .jpeg

Servlets, EJBs, and other Java code .java, .ebx,
.class

Query files .gxq

Data models .kdm

Connection files .props

NTV files .ntv
Chapter 4, Developing Applications 51

Getting Started
• Servlets contain the application’s business logic written in Java. For
example, a servlet can call another servlet or return data via a RowSet
object. The servlet handles data access, which may involve calling a query
file to execute a query against a relational database. And when a servlet
returns data via a RowSet object, it merges this output with a JSP.

• If the application must query a relational database, you create one or more
data models, and one or more query files based on a data model.

Although you can use Netscape Application Builder to manually define the
relationships between files, one of the benefits of Netscape Application Builder
is its automated code generation wizards. Wizards guide you in creating sets of
related files to perform commonly needed actions.

For example, many applications require login functionality, which derives from
the interaction of several files. Using the Login wizard, you can quickly create
the needed files, with the links between them automatically defined.

Getting Started
Before you launch Netscape Application Builder, the following conditions must
be in place:

• Understand the Netscape Application Server Environment

• Define the Application Environment

• Define the Application Requirements

• Define the User Interface

• Set Up the Data Sources
52 Getting Started Guide

Getting Started
Understand the Netscape Application
Server Environment

Because you will be deploying applications to the Netscape Application Server,
it is important that you understand the role of these applications within a three-
tiered environment. Before using Netscape Application Builder, it is
recommended that you become familiar with the concepts presented in the
Programmer’s Guide.

Define the Application Environment

What type of application do you want to design? Possible variations include:
Internet, intranet, and extranet.

Some examples are shown in the following table:

Define the Application Requirements

Once you’ve defined the application type, the next step is to gather the
requirements of that application. Requirements are often determined by
answering questions about the application’s purpose or functionality. For
example:

• Will users be anonymous, or will they be tracked by a username and
password?

Application Type Examples

Internet E-Commerce, Financial, Security, Portal, Internet Service
Provider (ISP).

Intranet Human Resources self-service, Sales force automation,
internal help desk

Extranet Supply chain management, insurance quotes, car
dealership management

Workgroup Accounting reports, RFE management
Chapter 4, Developing Applications 53

Getting Started
• Will the application support different user interfaces, such as multiple
languages or different versions of a browser?

• What kinds of data can users query or update, and how is it accessed?

• Additional issues include: performance, throughput, capacity, scaling,
reliability, and security.

The previous list is only a sample of questions to consider. For more
information on gathering application requirements, see the Programmer’s
Guide.

Define the User Interface

Defining the user interface determines the page flow, which affects how an
end-user navigates through the application. You define page flow by deciding
what files will call other files. The general principle of page flow is shown in
the previous figure, on .

The following questions can guide your decisions about user interface design:

• What is the page layout and flow for the application?

• What commands and buttons are available on each page?

• Will the pages use frames or not?

• Does the application require user validation?

If so, you may decide to create a login page through which users access the
application. Note that Netscape Application Builder provides a Login wizard
to guide you in creating login functionality.

• How will data be entered and displayed? In particular, the following
questions pertain to this issue:

• How many HTML pages or JavaServer Pages require input forms?

• What kinds of form elements are required for the HTML pages or JSPs?

• Will database results be displayed together on a single page or
displayed across multiple linked pages?
54 Getting Started Guide

Getting Started
• Are there any corporate standards that determine headers and footers,
logos, menu bars, or banner ads?

• Are there any international issues? For example, are the icons or cartoon
images meaningful to all users? Does translation pose a formatting problem?

• Are the commonly used features easy to find?

Netscape Application Builder provides several wizards that make it easy to
create some of the more common page designs. In addition, NAB includes a
“project map” feature to verify page flow. In HTML Flow view, the project map
displays web page relationships the way the end user will experience them. In
File Dependencies view, the project map displays the relationships of all files,
not just those seen by the end user.

For additional information on application design, see “Guidelines for Effective
Development” in Chapter 2, “Designing NAS Applications,” in the
Programmer’s Guide.

Set Up the Data Sources

A data source can be any of the following examples:

• relational database

• directory server

• legacy system (for example, mainframe files)

• client/server application (for example, Enterprise Resource Planning, or a
spreadsheet)

Most web applications access a data source in some way; for example, when
they display query results or when they allow users to update account
information.

In the case of a relational database, a database administrator or data architect
sets up and manages access at your site. Similarly for non-relational data
sources, it is assumed that these systems are available and that they provide
access to clients.
Chapter 4, Developing Applications 55

Writing Secure Applications
Writing Secure Applications
This section describes how to write secure application components that
perform authentication to establish and maintain a user’s identity.

The security model described in this section was developed for EJBs, and is
part of the standard for EJBs. As of the 2.1 servlet specification, there is no
standard security model for servlets. NAS has created a model for servlets in
order to provide security throughout the application, with some collaboration
with the developers of Java standards, so that the model presented here for
servlets is based heavily on an emerging standard.

Inside the Online Bookstore Sample
Application

The Online Bookstore sample application, which is shipped with NAS,
simulates an Internet e-commerce site where customers can search for books,
show details, add books to their shopping cart, place orders, and register for
billing. Furthermore, bookstore managers can access information about
customer usage and order status.

The user interface is a web browser that displays HTML pages and JavaServer
pages. The application was designed to run on Solaris. In addition, the
application can access an Oracle8 database and an LDAP server such as
Netscape Directory Server.

Application Model

The Online Bookstore demonstrates the NAS application model by
incorporating the following features:

• HTML

• JSPs

• servlets

• EJBs (stateful session bean, stateless session bean, and entity bean)

• database access through helper classes and JDBC APIs

• transaction processing, both local and global
56 Getting Started Guide

Inside the Online Bookstore Sample Application
• integration with an LDAP server

Application Flow

The flowchart on the following page summarizes the design of Online
Bookstore. You can think of this application as a set of functional modules,
each controlled by a servlet. This functional grouping is conceptual, not
structural—a convenience for better understanding the application flow. This
modular approach encourages parallel code development, through which
different teams handle each design module at the same time, with minimal
overlap.
Chapter 4, Developing Applications 57

Inside the Online Bookstore Sample Application
SearchServlet

ShowBooks.jsp

BookSearch.jsp

BooksByCategory
.jsp

LogoutServlet

CartServlet CheckOrders

DisplayCartItem

DisplayEmptyCart
.jsp

CheckOrders.jsp

index.html

.jsp

BookDetailServlet

BookDetail.jsp

PlaceOrderServlet

ShowOrder.jsp

RegisterServlet

RegistrationForm.jsp

AdminServlet

AdminLoginForm

ShowAllOrders
.jsp

.jspLoginServlet

LoginForm
.jsp

Servlet

Oracle database Directory Server
(LDAP)

BookAccountBean

ShoppingCartBean CashierBean

BookstoreServlet BookStore.jsp
58 Getting Started Guide

Presentation Flow
Presentation Flow
The following sequence describes a typical user session with the Online
Bookstore:

1. From a web browser, the user navigates the Internet to reach the first page
of the application, index.html.

2. From index.html, users can follow two main branches: customers can click
the Store Entrance image to display BookStore.jsp, and application
administrators can click the Manager’s Office image to invoke AdminServlet.

3. As a typical user, a customer clicks the Store Entrance image. The
application then displays the main customer page, BookStore.jsp.
Chapter 4, Developing Applications 59

Presentation Flow
4. From the BookStore.jsp page, a customer can browse books by subject,
search books by keyword, or add books to a shopping cart. Any of these
tasks can be performed as an anonymous user. However, before placing an
order or checking previous orders, a customer must sign in.

5. Clicking the Sign In link invokes the Login servlet. This servlet causes the
right side of the page to display the Customer Sign In form, a JSP named
LoginForm.jsp.
60 Getting Started Guide

Presentation Flow
6. From the Customer Sign In form, customers can take either of two actions.
Customers who previously registered can enter their email address and
password, whereas new customers must click the Register here link.

7. Clicking Register here invokes the Register servlet. This servlet causes the
right side of the page to display the Registration form, a JSP named
RegistrationForm.jsp.
Chapter 4, Developing Applications 61

Presentation Flow
8. Regardless of whether a user is registered, the user can perform different
types of searches from the left side of the page, using either the Quick
Search table or the Explore table. These page elements invoke the
SearchServlet.

9. When a results page appears, users can click a book title hyperlink.
Clicking a book title invokes the BookDetail servlet, which in turn displays
a JSP of item details.

10. If the book is of interest, the user presses a button to add the item to the
shopping cart. This action invokes the CartServlet, which in turn displays a
JSP of selected books. The displayed prices are calculated with the help of
ShoppingCartBean.
62 Getting Started Guide

Directory Structure
11. When the user is ready to buy the items in the shopping cart, the user
presses the Place Order button. This action invokes the PlaceOrder servlet.
This servlet uses the CashierBean to calculate the charges, then displays the
charges using the ShowOrder JSP.

12. The user can continue to navigate the application, searching for more
books or checking previous orders, for example.

13. Eventually, the user clicks the Logout hyperlink to invoke the Logout
servlet.

Directory Structure
The sample application includes component files organized into the following
directories.

In addition, many servlet files reside at the same level as the previous
directories. These servlets are described in the next section.

Directory Contents

account The BookAccount bean and related files to support accounting and
inventory.

cart The Cart bean and related files to support the selection of books.

cashier The Cashier bean and related files to support the buying of books.

custom Files involved with customizing the look and feel of the user interface.
This functionality is invoked using the Personalize button on the
Bookstore JSP.

database Helper classes and other code for connecting to the database.

images GIF and JPG files used in the web pages.

jsp JavaServer Pages

ldap A java file and property file to control LDAP access.

ntv The .gxr file (used in deployment) and various configuration files.

util Java files helpful to application developers.
Chapter 4, Developing Applications 63

Servlets
Servlets
This section describes the servlets used in the Online Bookstore. The servlets
are listed in the approximate order they would be encountered during a typical
session.

BookstoreServlet, called from index.html, displays the Bookstore JSP. This JSP
is the main customer page. Several of the application’s servlets are invoked
from the Bookstore JSP.

LoginServlet is invoked from the Bookstore JSP. This servlet launches
LoginForm.jsp, which in turn displays the Customer Sign In form. LoginServlet
verifies a customer’s email ID and password against records in the database,
then saves this information into an HTTP session.

SearchServlet is invoked from the Bookstore JSP. This servlet implements
logic for basic keyword searches, for detailed, form-based searches, and for
browsing by categories. SearchServlet also launches the JSPs necessary to input
the search criteria or to display the results.

BookDetailServlet is called from any book title link, as might appear in
ShowBooks.jsp and BooksByCategory.jsp. The servlet validates the bookID
parameter and launches BookDetails.jsp to display more information about the
item.

CartServlet manages the addition, deletion, and modification of shopping cart
items. This servlet is called by the “Shopping Cart” link on the Bookstore JSP, as
well as by buttons labeled “Add to Shopping Cart” or “Delete from Shopping
Cart.” CartServlet launches either of two JSPs: DisplayCartItem.jsp or
DisplayEmptyCart.jsp. The ShoppingCartBean EJB determines the items and
prices that appear.

PlaceOrderServlet is invoked from the “Place Order” button on
DisplayCartItem.jsp. The servlet checks the customer object saved in the
session. If the customer is registered, then control passes to the CashierBean
EJB, the order is processed, and the results appear by way of ShowOrder.jsp. If
the customer is not registered, then control passes to RegisterServlet.

RegisterServlet launches RegistrationForm.jsp, in which customers enter
personal information. When users submit their data, RegisterServlet connects to
a database, inserts the data, and saves the information into an HTTP session.
64 Getting Started Guide

EJB Functionality
RegisterServlet is invoked under two circumstances: when the user clicks
“Register Here” in the LoginForm JSP, or when the PlaceOrder servlet detects an
unregistered user.

CheckOrdersServlet is invoked from the Bookstore JSP. When invoked by
registered users, the servlet displays CheckOrders.jsp, which shows the user’s
previous orders, if any. When invoked by an administrator, the servlet displays
ShowAllOrders.jsp, which shows orders from all customers.

AdminServlet, called from index.html, displays AdminLoginForm.jsp. This JSP
form accepts a bookstore administrator’s ID and password. AdminServlet passes
this input to an LDAP server for authentication. If authentication succeeds, the
servlet allows viewing of customer information on another JSP,
ShowAllOrders.jsp.

LogoutServlet, invoked from the Bookstore JSP, implements the sign-out logic.
LogoutServlet invalidates the customer’s HTTP session and creates a new one.

EJB Functionality
The sample application contains three EJBs, and their database interactions are
shown in the following figure.

PlaceOrderServlet

CashierBean

Database

BookAccountBean

ShoppingCartBean

Transaction process
Chapter 4, Developing Applications 65

EJB Functionality
ShoppingCartBean is a stateful session bean. It holds the book items chosen
during the shopping session. The bean is stateful because the data it holds is
unique to each client and must not be shared. CartServlet relies on
ShoppingCartBean to display book information to the appropriate JSP. The
CashierBean EJB calls ShoppingCartBean to obtain data needed when an order
is placed.

BookAccountBean is an entity bean that controls the inventory of each book.
Unlike the other beans, BookAccountBean is involved in transactions only with
the database. In other words, this bean does not calculate data for display in
JSPs. CashierBean passes to BookAccountBean a set of book IDs and the
quantities sold for each. BookAccountBean then connects to the database and
performs a global transaction, thereby reducing the book counts as needed.

CashierBean is a stateless session bean. It coordinates with ShoppingCartBean
and BookAccountBean to process the customer’s order. CashierBean
encapsulates business logic, such as applying the necessary shipping fees and
taxes. BookAccountBean then connects to the database and updates it using a
global transaction.
66 Getting Started Guide

C h a p t e r

5
Chapter 5Deploying Applications
This chapter describes how to deploy applications on a Netscape Application
Server machine.

The following topics are included in this chapter:

• Deploying an Application Using Deployment Manager

• Deploying Application Files Manually

Deploying an Application Using Deployment
Manager

You can deploy an application using the Deployment Manager, a separate tool
accessible from Netscape Application Server (NAS) Administrator or from
Netscape Application Builder (NAB). When you deploy an application, the
Deployment Manager installs all the application’s files and registers all its
components on the destination server, a NAS machine. An application must be
deployed before it can be used.

Generally, a developer creates an application on a development machine using
tools such as NAB, then deploys that application from the development
machine to an application server using the Deployment Manager. NAS
Chapter 5, Deploying Applications 67

Deploying an Application Using Deployment Manager
administrators, on the other hand, might use the Deployment Manager to both
download an application from a NAS machine and subsequently redeploy that
application to one or more applications servers.

Specifying Application Directories

Before you deploy an application, you can change the application root
directories that specify where the Java Server or C++ Server processes should
look for application component files such as query files and template files. By
referencing application root directories, you can move these components
around without having to rewrite application code. If you do not specify
particular root directories, application files are deployed to default directories.

The Java Server and C++ Server processes use root directories to find
application components when those component are needed. For example, after
a result set is returned from the database, the application most likely uses a
template to format the data. The process, whether Java Server or C++ Server,
scans the template root directory or directories to find the specified template
file referenced by the application or query file.

To specify application root directories, perform the following steps:

1. From the NAS Administrator toolbar, click the Application button to open
the Application window.

2. In the left pane of the Application window, select the NAS machine whose
application root directories you want to change.

3. In the right pane of the Application window, use the text boxes to modify
root directories for the specified application components as shown in the
following figure:
68 Getting Started Guide

Deploying an Application Using Deployment Manager
Use a semicolon-delimited list when specifying more than one directory for
an application component.

4. Click Apply Changes to save your changes to your NAS machine.

Packaging Application Files for
Deployment

Before you deploy an application, you must bundle its files into a JAR file or
“package.” A package contains information about the application files, such as
their type and destination directory. You can select specific application files to
include in the package or bundle an entire application into a package ready for
deployment.

When you later deploy the package, the bundled application files are
automatically distributed to their appropriate directories on one or more
servers. For example, Java files and query files are automatically sent to the
applications directory of your application server. At the same time, web server
files, such as HTML templates, are automatically deployed to a user-defined
directory on the web server. In addition, the HTML template files that reside on
the application server, rather than on the web server, are deployed to their
proper directory.
Chapter 5, Deploying Applications 69

Deploying an Application Using Deployment Manager
Creating a Package

To create a package, perform the following steps:

1. Open the Deployment Manager in one of two ways:

• From the NAS Administrator Application window, click the Launch
NASDM button.

• From the $NASROOT/nas/bin, execute deployGUI

2. From the Deployment Manager’s File menu, choose New Project.

The following dialog box appears:

3. Type a name for your project.

This name is also used to identify your JAR file or package. The project
name and directory name must be the same.

4. If necessary, edit the path to the directory where your JAR file is stored.

5. Click OK.

6. From the Edit menu, choose Insert.

You can insert files one at a time, insert all files in a directory, or insert all
files from the subtree of a selected directory.

7. Navigate to the directory where application files are stored and select the
files to include in the package.
70 Getting Started Guide

Deploying an Application Using Deployment Manager
The following dialog box appears:

8. If necessary, edit the application and web file root directories for your
application server using the arrow buttons.

On a Unix machine, the default root directory for application files is similar
to the following:

/export/home/Solaris8Project/NAS4SP2/nas/APPS

When you deploy an application using the Deployment Manager, the
destination server organizes the application files relative to the root
directory on your development machine. For instance, application files
stored on your development machine in the location

/export/home/Solaris8Project/nasdeploy

are organized on the destination server in the following location:

destination server application root directory/myapps/
Chapter 5, Deploying Applications 71

Deploying an Application Using Deployment Manager
In the previous figure, pressing the down arrow button would add the
coffee portion of the path to the target directories as shown in the
following figure:

9. Click OK.

The following dialog box appears:

10. Click Yes if the directory contains .class files that will be used in the
application.

If the directory does not contain .class files that will be used in the
application, there is no need to add to the class path. If the directory does
contain .class files and you click No, the Deployment Manager will not
be able to load these .class files or deploy them correctly.
72 Getting Started Guide

Deploying an Application Using Deployment Manager
The Deployment Manager must have a class path in order to load .class
files. Class files must be loaded to edit an EJB’s deployment descriptor or to
determine if a .class file is a servlet.

11. Once the application files appear in the JAR window as shown in the
following figure, create meta-info files such as:

• EJB descriptors: see “Preparing an Enterprise Java Bean for
Deployment” on page 75.

• servletInfo files: see “Editing a Servlet” on page 78.

12. From the File menu, choose Save JAR when all files you want to include in
the package appear in the list.

If the list of files in your project shows files marked in red with an asterisk,
these files require additional action. Skip to step 13.

If your project files require no further action, the following dialog box
appears:
Chapter 5, Deploying Applications 73

Deploying an Application Using Deployment Manager
A Name Type Value (NTV) file called appinfo.ntv is created by default if
such a file doesn’t already exist. This file contains the name of the JAR file,
associated session information, and a list of servlets included in the JAR file.

13. Choose one of the following options:

• Click Cancel to open the appInfo editor.

If you choose to edit the appInfo file, see “Editing a Servlet” on page 78 for
more information about this editor.

• Click OK to save the JAR file without editing the appInfo file.

14. If your project files require additional action (indicated by red type and an
asterisk next to the files in the JAR window), the following dialog box
appears:

You can click a file to see what action is required. For instance, an EJB may
be missing stubs. Click Cancel to dismiss the dialog box and correct these
problems or click Save to save the JAR as-is.

15. When saving a JAR file, you can filter .java files out of the package by
selecting the corresponding checkbox in the Save JAR File dialog box as
shown in the following figure:
74 Getting Started Guide

Deploying an Application Using Deployment Manager
16. Click OK.

If you want to save an “in-progress” list of files without completing the
package, you can save the list of files as a .dxm file by choosing Save List
from the File menu. You can later open the file and modify it.

The package is ready for deployment.

Preparing an Enterprise Java Bean for Deployment

You can prepare an Enterprise Java Bean (EJB) to include in your JAR file using
the packaging tool. To prepare an EJB, perform the following steps:

1. From the list of files in the JAR window, select the following three types of
classes:

• implementation class

• remote interface class

• home interface class

These three classes are required to create an EJB. You can add other classes
in addition to these three.

2. From the EJB menu, choose Create Descriptor.

A dialog appears showing which classes are used in which roles.

If you selected only one .class file, that file appears next to the
appropriate class type (Remote Interface, for example). You can then select
the remaining two required files from drop-down boxes that appear next to
the appropriate class type as shown in the following figure:
Chapter 5, Deploying Applications 75

Deploying an Application Using Deployment Manager
The drop-down boxes list only those .class files that satisfy the
requirements of the EJB.

3. Click OK when each field is satisfied.

The EJB deployment descriptor editor appears as a separate tool in the
Deployment Manager window:

4. Edit EJB deployment information if necessary using this editor.

See “Editing an EJB’s Deployment Descriptor” on page 79.

5. From the Deployment Manager’s EJB menu, choose Save Descriptor.
76 Getting Started Guide

Deploying an Application Using Deployment Manager
The file is saved as a .properties file.

If your EJB is a session bean rather than an entity bean, and you have
neglected to specify the state management type in the bean’s deployment
descriptor, the following dialog box appears:

6. Select the type of your EJB: Stateful Session or Stateless Session.

A stateless session bean is completely transient and encapsulates a
temporary piece of business logic needed by a specific client for a limited
time span.

A stateful session bean is also transient, and uses a “conversational state” to
preserve information about its contents and values between client calls. The
conversational state enables the container to maintain information about the
state of the session bean and to recreate that state at a later point in
program execution when needed.

The following dialog box appears:

7. Decide whether to build stubs for the EJB or not.

Stubs and skeletons are required by the EJB container and must be
deployed with the application files. These stubs and skeletons enable
remote communication and allow the container to intercept all bean
requests. When you create stubs and skeletons, the Deployment Manager
automatically adds them to the list of application files.
Chapter 5, Deploying Applications 77

Deploying an Application Using Deployment Manager
After the Deployment Manager builds the stubs, the following status
window appears (this may take a moment or two):

If you choose to build stubs later, you can select Build Stubs from the EJB
menu while the EJB deployment descriptor editor is open and displaying
that EJB. You can choose Build All Stubs at anytime to build stubs for all
EJBs whose .properties files are in the list of files appearing in the JAR
window.

Editing a Servlet

You can edit any class file in a package as a servlet. The file is then marked as
a servlet and an .ntv file is created for it by default.

To edit a servlet, perform the following steps:

1. From the Servlet menu, choose Edit Info.

The NTV editor appears.
78 Getting Started Guide

Deploying an Application Using Deployment Manager
2. Right-click a branch in the tree to edit that branch or remove it.

See “Creating a Package” on page 70 for more information about .ntv files.

Editing an EJB’s Deployment Descriptor

Deployment descriptors include the declarative attributes associated with an
EJB (or bean). These attributes tell an EJB’s container how to manage the bean.
A container is where an EJB “lives” from its creation to its destruction. The
container manages the EJB’s life cycle and support services while providing
services that allow clients to look up the interfaces of installed EJB classes.

A developer might edit an EJB’s deployment descriptor as part of a cycle of
developing and testing an application. The editor allows either administrators
or developers to easily modify the attributes of EJBs to better work within an
application.

You can edit an EJB’s deployment descriptor using the editor shown in the
following figure:
Chapter 5, Deploying Applications 79

Deploying an Application Using Deployment Manager
Editing General Attributes

To edit the General Attributes of an EJB, perform the following steps:

1. If the editor is not already open, you can open it by right-clicking on a
.properties file displayed in the JAR window and choosing Edit
Descriptor.

You can edit the Bean Home Name as necessary, change the State
Management Type of the bean, or edit the bean’s session timeout value.

See the Programmer’s Guide for more information about these values.

2. From the File menu, choose Save Descriptor to save your changes.

Editing Control Descriptors

The Control Descriptor tab allows you to configure meta-data for an EJB at
deployment time. You can edit transaction isolation levels, transactional
attributes, and the mode entry for the bean.
80 Getting Started Guide

Deploying an Application Using Deployment Manager

To edit the Control Descriptors for an EJB, perform the following steps:

1. Click the Control Descriptors tab to display the window as shown in the
previous figure.

The EJB’s meta-data appears in the Bean Default area of the window. You
can edit this information for the bean as a whole or choose a particular
method within the bean and change that method’s meta-data in the Method
Overrides area of the window.

The Run As Mode entry defines the identity a bean uses during execution
and how a bean identifies its user to other beans or resources. Most
commonly, this value is Client, which means that a bean or its methods are
executed using the client’s identity. See the Programmer’s Guide for more
information.

Transaction Attributes specify when a bean needs to begin a transaction.
See he Programmer’s Guide for more information.
Chapter 5, Deploying Applications 81

Deploying an Application Using Deployment Manager
An isolation level specifies how much or how little a transaction can see of
other, simultaneous interactions with a database. For more information, see
the Programmer’s Guide.

Editing Environment Properties

.

82 Getting Started Guide

Deploying an Application Using Deployment Manager
Editing Access Control

Deploying an Application

After you have created a package using the packaging tool, you use the
Deployment Manager to send the package to a NAS machine.

If there is more than one JAR file in a single directory, you can deploy multiple
JAR files at the same time from that directory.

To deploy a JAR using the Deployment Manager, perform the following steps:

1. From the File menu, choose Deploy.

You can deploy the currently open package, or you can choose a directory
and deploy one or more packages stored therein.
Chapter 5, Deploying Applications 83

Deploying an Application Using Deployment Manager
You are prompted to save the JAR file as well as the appInfo file if either
has changed since you last saved it.

2. From the list of registered servers, choose a NAS machine to deploy to.

To register additional servers, click Register and enter the necessary server
information.

3. Click Deploy.

The status of the deployment process appears in a separate window.
84 Getting Started Guide

Deploying an Application Using Deployment Manager
Downloading a Package

Once an application has been installed on an application server, you can
download that application to your machine using the Deployment Manager.
When you download an application, you save that application’s JAR file to your
local machine or another machine on your network.

To download an application, perform the following steps:

1. From the File menu of the Deployment Manager, choose Download.

The following dialog box appears:

2. Select a server from which to download an application.

You can register additional servers by clicking the Register button. See
“Deploying an Application” on page 83 for details.

3. From the list of JAR files found on the selected server, select a JAR file to
download.

4. Click Download.

5. Choose the directory where you will save the JAR file on your local
machine or the network.

The message window displays the status of the file you are downloading.
Chapter 5, Deploying Applications 85

Deploying Application Files Manually
Deploying Application Files Manually
The Deployment Manager does not allow you to deploy individual application
components that are not part of an application. Instead, you can deploy
individual application files manual.

This section contains separate procedures for deploying Enterprise Java Beans,
servlets and JavaServer Pages (JSPs), and data sources:

• Manually Deploying EJBs

• Manually Deploying Servlets and JSPs

• Manually Deploying Data Sources

Manually Deploying EJBs

To deploy an EJB manually, perform the following steps:

1. Compile the EJB.

2. Generate stubs and skeletons.

3. Create a deployment descriptor.

4. Copy files to NAS.

5. Register the EJB.

Compile the EJB

Using javac, compile all EJB files including the bean, home interface, and
remote interface.

The following example shows what you might type at the command line on
Solaris operating systems:

% $GX_ROOTDIR/usr/java/bin/javac ShoppingCartBean.java
IShoppingCart.java IShoppingCartHome.java
86 Getting Started Guide

Deploying Application Files Manually
In this examples, ShoppingCartBean.java is the bean implementation file,
IShoppingCart.java is the remote interface, and
IShoppingCartHome.java is the home interface.

Generate Stubs and Skeletons

Stubs and skeletons are required by the EJB container and must be deployed
with the application files. These stubs and skeletons enable remote
communication and allow the container to intercept all bean requests.

Using ejbc, generate stubs and skeletons for your EJB following these
example:

$GX_ROOTDIR/bin/ejbc -sf cart.ShoppingCartBean cart.IShoppingCart
cart.IShoppingCartHome

-sf is used for stateful session beans.

Create a Deployment Descriptor

Deployment descriptors include the declarative attributes associated with an
EJB (or bean). These attributes tell an EJB’s container how to manage the bean.
A container is where an EJB “lives” from its creation to its destruction. The
container manages the EJB’s life cycle and support services while providing
services that allow clients to look up the interfaces of installed EJB classes.

Copy the Files to NAS

Copy the class files from your development machine to the destination server’s
APPS directory. You must preserve the directory structure used on the
development machine.

Register the EJB

Once you have copied the files onto the destination machine, you must register
the EJB using beanreg on the NAS host machine. BeanReg registers a bean
locally using the .properties file that describes the bean. Registering your
bean requires the deployment descriptor file you created in “Create a
Deployment Descriptor.”
Chapter 5, Deploying Applications 87

Deploying Application Files Manually
For example, on Solaris machines, type the following at the command line;

% $GX_ROOTDIR/bin/beanreg filename.properties

Manually Deploying Servlets and JSPs

To deploy a servlet or JSP manually, perform the following steps:

1. Create servlet configuration files.

2. Copy files to NAS.

3. Register the servlet.

Create Servlet Configuration Files

You must create a configuration file for each servlet, and one for the
application as a whole. These configuration files must be referenced in an
application-wide configuration file called appInfo.ntv. Servlets that are not
part of a specific application are part of the “generic” application, which also
must have a configuration file appInfo.ntv.

Servlet configuration files can be named anything as long as the name contains
the .ntv suffix and the filename is referenced in appInfo.ntv. They must be
placed in a certain directory, which is specified in the next section, “Copy the
Files to NAS.”

The following is an example of an appInfo.ntv file:

NTV-ASCII

{

“SessionInfo” NTV {

“timeout” Int “400”,

“flags” StrArr [“SESSION DISTRIB”],

“sessionManagement” Int “0”

},
88 Getting Started Guide

Deploying Application Files Manually
“ServletFiles” StrArr [“servInfo”],

“AppName” Str “nsOnlineBookstore”,

}

AppName refers to the name of the application, which, in this case, is
nsOnlineBookstore. servInfo refers to the servletInfo file, servInfo.ntv.
You can find this file in the following location:

NAS install directory/APPS/NSOnlineBookstore/ntv

Copy the Files to NAS

Servlets and JSPs can be part of an application or exist outside of an
application, depending upon how the web client invokes the servlet.

To copy these files to NAS, first follow the directions that apply to your
application component:

• Copy Servlets as Part of an Application

• Copy JSPs as Part of an Application

• Copy Servlets Not Part of an Application

• Copy JSPs Not Part of an Application

Next, copy the class files into the NAS class path, which is usually
$GX_ROOTDIR/APPS. You must preserve the directory structure when
copying the class files. See the examples in “Sample Directory Structures for
Servlets and JSPs Not Part of an Application” on page 91 and “Sample Directory
Structures for Servlets and JSPs as Part of an Application” on page 91 for details.

Finally, copy static content like HTML and GIF files to the web server
documentation root.

Copy Servlets as Part of an Application

For a servlet that’s part of an application, the following URL would appear in
the web client:

http://$HOSTNAME:$PORT/NASApp/$AppName/$ServletName

In this URL, $HOSTNAME is the DNS name of the host machine, $PORT is the
TCP/IP port, NASApp is a key defined the registry to signal to NAS that the URL
references a servlet, $AppName is the AppName variable in the appInfo.ntv
files, and ServletName is the name of the servlet.
Chapter 5, Deploying Applications 89

Deploying Application Files Manually
To mirror this URL on your own machine, copy the application’s NTV files to
the $GX_ROOTDIR/APPS/$AppName/ntv directory.

Note The appInfo.ntv file must point to all relevant servletInfo.ntv files. If
you change the names of the servletInfo.ntv files, you must reflect those
changes in the appInfo.ntv file.

Copy JSPs as Part of an Application

For a JSP that’s part of an application, copy the JSP into the $GX_ROOTDIR/
APPS/$AppName directory, then refer to them using $AppName/
jspname.jsp.

Copy Servlets Not Part of an Application

For a servlet that’s not part of an application, the following URL would appear
in the web client:

http://$HOSTNAME:$PORT/servlets/$ServletName

In this URL, $HOSTNAME is the DNS name of the host machine, $PORT is the
TCP/IP port, servlets is a non-changable string, and ServletName is the
name of the servlet.

To mirror this URL on your own machine, copy the servletInfo.ntv files
to the $GX_ROOTDIR/APPS/ntv directory. You must update the
appInfo.ntv file with the new servletInfo.ntv files.

Copy JSPs Not Part of an Application

For a JSP that’s not part of an application, copy the JSP into the
$GX_ROOTDIR/APPS/ directory, then refer to them using jspname.jsp.
90 Getting Started Guide

Deploying Application Files Manually
Sample Directory Structures for Servlets and JSPs Not Part of
an Application

For servlets and JSPs not in an application, use the following directory
structures as examples:

NAS install directory (APPS is in the NAS class path):

/disk2/ns-home/nas/APPS/

Servlet with class name javaSpec:

/disk2/ns-home/nas/APPS/javaSpec.jsp

JSP referenced by javaSpec.jsp:

/disk2/ns-home/nas/APPS/javaSpec.jsp

Default NTV directory for all servlets and JSPs not in any application:

/disk2/ns-home/nas/APPS/ntv

Default appInfo.ntv file referencing all servlets not in an application:

/disk2/ns-home/nas/APPS/ntv/appInfo.ntv

Sample Directory Structures for Servlets and JSPs as Part of an
Application

For servlets and JSPs in an application, use the following directory structures as
examples. Here, the application name is Project1.

NAS install directory (APPS is in the NAS class path):

/disk2/ns-home/nas/APPS/Project1/

Location of all NTV files for Project1:

/disk2/ns-home/nas/APPS/Project1/ntv/

Location of appInfo.ntv for Project1:

/disk2/ns-home/nas/APPS/Project1/ntv/appInfo.ntv

servletInfo.ntv file for Project1.webapp.NASservlet servlet which
is referenced in the appInfo.ntv file for this project:

/disk2/ns-home/nas/APPS/Project1/ntv/NASservlet.ntv
Chapter 5, Deploying Applications 91

Deploying Application Files Manually
NASservlet servlet with a full class name of
Project1.webapp.NASservlet:

/disk2/ns-home/nas/APPS/Project1/webapp/NASservlet.class

NASservlet JSP file referencable with the name Project1/webapp/
NASservlet.jsp:

/disk2/ns-home/nas/APPS/Poject1/webapp/NASservlet.jsp

URL to access NASservlet:

http://warp/NASApps/Project1/NASservlet

Register the Servlet

On the NAS host machine, run one of the following scripts on the
appInfo.ntv file to register all servlets in the appInfo.ntv file:

On Solaris: servletReg.sh

For example, on Solaris, you might type the following at the command line:

%$GX_ROOTDIR/bin/servletReg.sh -i appInfo.ntv

Manually Deploying Data Sources

To deploy a data source manually, perform the following steps:

1. Create the data source file.

2. Register the data source.
92 Getting Started Guide

Deploying Application Files Manually
Create the Data Source File

The data source file contains information necessary for accessing the database
such as a user name and password. Using a text editor, create a data source file
(filename.props) using the following example as a guide:

DataBase=ksample

DataSource=ksample

UserName=kdemo

PassWord=kdemo

ResourceMgr=rm_orcl #Optional

Data source files are not referenced at run time, so you need not place them in
a specific directory on your NAS machine. However, it is good convention to
place them in the APPS/$AppName directory.

For more information, see the Programmer’s Guide.

Register the Data Source

After you have created the data source file, you must run dsreg on the NAS
host machine.

For example, on Solaris machines, you might type the following at the
command prompt:

$GX_ROOTDIR/bin/dsreg “jdbc/BookstoreDS” BookstoreDS.props

where jdbc/BookstoreDS is the data source name.
Chapter 5, Deploying Applications 93

Deploying Application Files Manually
94 Getting Started Guide

Index

A
APIs 15

appInfo 80, 84, 85, 86, 88

application directories
specifying 64

application files
packaging for deployment 65

application model 19

application partitioning 22

applications
deploying 63
environment 49
parts of 44
requirements 49

AppLogics 20

B
beanreg 83

bookstore sample application 52

business logic 46

C
caching

database connections 25
results 25

class files 68, 71, 85

class path 85

client tier 14

compiling EJBs manually 82

configuration files 84
creating manually 84

container 75

control descriptors, editing 76

conventions, documentation 11

D
data access logic 45

data model 45

data source
about 51

data source files
creating manually 89

data sources
deploying manually 88
registering manually 89

data streaming 26

data tier 14

deploying 79
applications 63
preparing an EJB for 71
registering a server for 80

deploying manually 82
data sources 88
EJBs 82
JSPs 84
servlets 84

deployment 17

deployment descriptors 83
creating manually 83
described 75
editing 75

Deployment Manager 63, 79
opening 66

directories, root 64

documentation 8
conventions 11
Index 95

downloading a package 81

E
ejbc 83

EJBs
containers 75
sample application 61

Enterprise JavaBeans 20

event logging 31

extensions 21

F
files

relationships between 47

file types 47

fonts, use in document 12

I
isolation level 78

J
JAR files

downloading 81

javac 82

JavaServer Pages 20

JSPs
deploying manually 84

L
load balancing 23

M
multi-threading support 26

multitiered environment 13

N
Name Type Value 70

Netscape Application Server
documentation 8

Netscape Application Server Administrator 30
described 36

Netscape Application Server Deployment
Manager 17

Netscape Directory Server 31

Netscape Extension Builder 21

NTV
editor 74
file 70

P
packages

downloading 81

packaging application files for deployment 65,
66

preparing an EJB for deployment 71

presentation layout 46

presentation logic 46

properties file 73

Q
query file 45

query files 20

R
registering

server for deployment 80

registering manually
data sources 89
EJBs 83
servlets 88

root directories 64, 67
specifying 64
templates 64
96 Getting Started Guide

Run as Mode 77

S
sample application 52

sample applications 16

security 28

server tier 14

servlets 20
deploying manually 84
editing 74
registering manually 88
sample application 60

session management 28

stateful session beans 73, 83

stateless session beans 73

state management 28

streaming 26

stubs and skeletons 73, 83
generating manually 83

T
templates 20

Transaction Attributes 77

types
file 47

U
URLs

format in manual 11

user interface, designing 50
Index 97

	Contents
	Preface
	How This Guide Is Organized
	Using the Documentation
	Documentation Conventions

	Product Overview
	The Multi-tiered Environment
	Product Components
	Programming APIs
	System Services and Application Services
	Sample Applications
	NAS Administrator
	NAS Deployment Manager
	Netscape Directory Server
	Features

	Rapid Application Development
	Application Model
	Industry-Standard Components
	Other Components

	Core Services
	A Choice of Tools

	High Scalability
	Application Partitioning
	Dynamic Load Balancing

	High Performance
	Database Connection Caching
	Result Caching
	Data Streaming
	Multi-threaded Capabilities
	Optimized Communication with Web Servers

	High Availability
	Session and State Management
	Security
	User Authentication
	Access Controls to Data Sources

	Management Capabilities
	Netscape Application Server Administrator
	Dynamic Application Management
	Event Logging and Failure Analysis

	Netscape Directory Server
	Support for Third-Party Management Tools

	Installing NAS on Solaris 8
	About Installing NAS
	Checking Software Requirements
	Running the Quick Installation Script
	Verify Web Server Configuration
	Verifying Installation

	Using the Sample Applications
	Online Bookstore Sample Application
	Configuring the Oracle Database
	Cleanup Resource Manager Entry in NAS Registry
	Creating a Group and a User in the Directory Server

	Running the Sample Application
	Entering the Bookstore as a Customer
	Entering the Bookstore as a Manager

	Updating the Sample Application

	Developing Applications
	Parts of an Application
	Data Access Layer
	Relational Data Sources
	Nonrelational Data Sources

	Presentation Layer
	About Presentation Logic
	About Presentation Layout

	Business Logic Layer
	Enterprise JavaBeans

	Assembling the Pieces
	Types of Files in a Project
	How Files Relate to Each Other

	Getting Started
	Understand the Netscape Application Server Environment
	Define the Application Environment
	Define the Application Requirements
	Define the User Interface
	Set Up the Data Sources

	Writing Secure Applications
	Inside the Online Bookstore Sample Application
	Application Model
	Application Flow

	Presentation Flow
	Directory Structure
	Servlets
	EJB Functionality

	Deploying Applications
	Deploying an Application Using Deployment Manager
	Specifying Application Directories
	Packaging Application Files for Deployment
	Creating a Package
	Preparing an Enterprise Java Bean for Deployment
	Editing a Servlet
	Editing an EJB’s Deployment Descriptor

	Deploying an Application
	Downloading a Package

	Deploying Application Files Manually
	Manually Deploying EJBs
	Compile the EJB
	Generate Stubs and Skeletons
	Create a Deployment Descriptor
	Copy the Files to NAS
	Register the EJB

	Manually Deploying Servlets and JSPs
	Create Servlet Configuration Files
	Copy the Files to NAS
	Register the Servlet

	Manually Deploying Data Sources
	Create the Data Source File
	Register the Data Source

	Index

