
Contents

About This Book ...7

Chapter 1 Basics of Enterprise Server Operation9

Configuration Files ...10

magnus.conf ..10

obj.conf ..10

mime.types ..11

How the Server Handles Requests from Clients ..11

HTTP Basics ..12

Steps in the Request Handling Process ..13

Directives for Handling Requests ...14

Using NSAPI to Write New Server Application Functions14

Chapter 2 Syntax and Use of Obj.conf ..17

Server Instructions in obj.conf ..17

Summary of the Directives ...18

Object and Client Tags ..21

The Object Tag ..21

The Client Tag ...23

Flow of Control in obj.conf ...24

Init ..24

AuthTrans ..25

NameTrans ..25

PathCheck ..27

ObjectType ..27

Service ...29

AddLog ..32

Error ...33

Syntax Rules for Editing obj.conf ..33

Order of Directives ...33
Contents i

Parameters .. 34

Case Sensitivity ... 34

Separators ... 34

Quotes ... 34

Spaces ... 35

Line Continuation ... 35

Path Names ... 35

Comments ... 35

Chapter 3 Predefined SAFS for Each Stage in the Request Handling Process

37

Init Stage .. 39

AuthTrans Stage .. 57

NameTrans Stage ... 61

PathCheck Stage .. 66

ObjectType Stage .. 79

Service Stage .. 83

AddLog Stage .. 97

Error Stage ... 100

Chapter 4 Creating Custom SAFs .. 103

The SAF Interface .. 104

SAF Parameters .. 104

pb (parameter block) ... 104

sn (session) ... 105

rq (request) ... 105

Result Codes .. 107

Creating and Using Custom SAFs ... 108

Write the Source Code ... 109

Compile and Link ... 110

Load and Initialize the SAF .. 110

Instruct the Server to Call the SAFs ... 111

Stop and Start the Server .. 113

Test the SAF .. 113
ii NSAPI Programmer’s Guide for Enterprise Server 4.0

Overview of NSAPI C Functions .. 113

Parameter Block Manipulation Routines ... 114

Protocol Utilities for Service SAFs .. 115

Memory Management ... 115

File I/O .. 115

Network I/O ... 116

Threads .. 116

Utilities .. 117

Required Behavior of SAFs for Each Directive .. 117

Init SAFs .. 118

AuthTrans SAFs ... 118

NameTrans SAFs ... 119

PathCheck SAFs .. 119

ObjectType SAFs ... 119

Service SAFs .. 120

Error SAFs ... 120

AddLog SAFs ... 120

CGI to NSAPI Conversion ... 121

Chapter 5 NSAPI Function Reference ... 123

NSAPI Functions (in Alphabetical Order) .. 123

Chapter 6 Examples of Custom SAFsS .. 181

Examples in the Build ... 182

AuthTrans Example ... 183

Installing the Example .. 183

Source Code .. 184

NameTrans Example ... 185

Installing the Example .. 187

Source Code .. 187

PathCheck Example .. 188

Installing the Example .. 188

Source Code .. 189

ObjectType Example ... 191

Installing the Example .. 192
Contents iii

Source Code .. 192

Service Example .. 194

Installing the Example .. 194

Source Code .. 194

More Complex Service Example .. 196

AddLog Example ... 196

Installing the Example .. 197

Source Code .. 197
iv NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix A Data Structure Reference .. 201

Privatization of Some Data Structures .. 202

session ... 202

pblock .. 203

pb_entry ... 203

pb_param ... 203

Session->client ... 204

request ... 204

stat .. 205

shmem_s .. 205

cinfo ... 206

Appendix B Variables in magnus.conf ... 207

Server Information .. 208

Object Configuration File .. 211

Language Issues .. 212

DNS Lookup .. 214

Threads, Processes and Connections ... 214

Native Thread Pools .. 217

CGI ... 219

Error Logging and Statistic Collection .. 219

ACL ... 221

Security .. 222

Miscellaneous .. 226

Appendix C MIME Types ... 227

Introduction ... 227

Loading the MIME Types File ... 228

Determining the MIME Type .. 228

How the Type Affects the Response .. 229

What Does the Client Do with the MIME Type? ... 230

Syntax of the MIME Types File ... 230

Sample MIME Types File .. 231

Appendix D Wildcard Patterns .. 233
Contents v

Wildcard Patterns .. 233

Wildcard Examples ... 234

Appendix E Time Formats ... 237

Appendix F Server-Parsed HTML Tags .. 239

Using Server-Parsed Commands .. 239

config .. 240

include .. 241

echo ... 241

fsize ... 241

flastmod .. 242

exec ... 242

Environment Variables in Commands ... 242

Appendix G HyperText Transfer Protocol .. 245

Introduction ... 245

Requests ... 246

Request Method, URI, and Protocol Version .. 246

Request Headers ... 246

Request Data ... 247

Responses .. 247

HTTP Protocol Version, Status Code, and Reason Phrase 247

Response Headers .. 248

Response Data .. 249

Appendix H Alphabetical List of NSAPI Functions and Macros 251

Appendix I Alphabetical List of Directives in magnus.conf 257

Appendix J Alphabetical List of Pre-defined SAFs 261

Index .. 265
vi NSAPI Programmer’s Guide for Enterprise Server 4.0

About This Book
This book was last updated 8/12/99.

This book discusses how to use Netscape Server Application Programmer’s
Interface (NSAPI) to build plugins that define Server Application Functions
(SAFs) to extend and modify the Enterprise Server versions 3.x and 4.0. The
book also discusses the purpose and use of the configuration files obj.conf,
magnus.conf and mime.types, and provides comprehensive lists of the
directives and functions that can be used in these configuration files. It also
provides a reference of the NSAPI functions you can use to define new plugins.

This book has the following chapters and appendices:

• Chapter 1, “Basics of Enterprise Server Operation.”

This chapter discusses how the Enterprise Server uses configuration files to
perform initialization tasks and to process client requests.

• Chapter 2, “Syntax and Use of Obj.conf.”

This chapter goes into detail on the configuration file obj.conf. The
chapter discusses the syntax and use of directives in this file, which instruct
the server how to process requests.

• Chapter 3, “Predefined SAFS for Each Stage in the Request Handling
Process.”

This chapter discusses each of the stages in the request handling process,
and provides an API reference of the Server Application Functions (SAFs)
that can be invoked at each stage.

• Chapter 4, “Creating Custom SAFs.”

This chapter discusses how to create your own plugins that define new
SAFs to modify or extend the way the server handles requests.

• Chapter 5, “NSAPI Function Reference.”

This chapter presents a reference of the functions in the Netscape Server
Application Programming Interface (API). You use NSAPI functions to
define SAFs.

• Chapter 6, “Examples of Custom SAFsS.”

This chapter discusses examples of custom SAFs to use at each stage in the
request handling process.
 , 7

• Appendix A, “Data Structure Reference.”

This appendix discusses some of the commonly used NSAPI data structures.

• Appendix B, “Variables in magnus.conf.”

This appendix discusses the variables you can set in the configuration file
magnus.conf to configure the Enterprise Server during initialization.

• Appendix C, “MIME Types.”

This appendix discusses the MIME types file, which maps file extensions to
file types.

• Appendix D, “Wildcard Patterns.”

This appendix lists the wildcard patterns you can use when specifying
values in obj.conf, various predefined SAFs and in some NSAPI functions.

• Appendix E, “Time Formats.”

This appendix lists time formats.

• Appendix F, “Server-Parsed HTML Tags.”

This appendix discusses the syntax and use of server-parsed HTML tags.

• Appendix G, “HyperText Transfer Protocol.”

This appendix gives an overview of HTTP.

• Appendix H, “Alphabetical List of NSAPI Functions and Macros,”
Appendix I, “Alphabetical List of Directives in magnus.conf,”
Appendix J, “Alphabetical List of Pre-defined SAFs.”

These appendices provide alphabetical lists for easy lookup of NSAPI
functions, predefined SAFs, and variables in magnus.conf.
8 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

1
Basics of Enterprise Server Operation
The configuration and behavior of Enterprise Server 4.0 is determined by a set
of configuration files. You can change the settings in these configuration files
either by using the Server Manager interface or by manually editing the files.

The configuration file that contains instructions for how the server processes
requests from clients is called obj.conf. You can modify and extend the
request handling process by adding or changing the instructions in obj.conf.
You can use the Netscape Server Application Programming Interface (API) to
create new Server Application Functions (SAFs) to use in instructions in
obj.conf.

This chapter discusses the configuration files used by the Enterprise Server.
Then the chapter looks in more detail at the server’s process for handling
requests. The chapter closes by introducing the use of Netscape Server
Application Programming Interface (NSAPI) to define new functions to modify
the request-handling process.

• Configuration Files

• How the Server Handles Requests from Clients

• Using NSAPI to Write New Server Application Functions
Chapter 1, Basics of Enterprise Server Operation 9

Configuration Files
Configuration Files
The configuration and operation of the Enterprise Server is controlled by
configuration files. The configuration files reside in the directory server-
root/server-id/config/. This directory contains various configuration files
for controlling different components, such as jsa.conf for configuring server-
side JavaScript and netshare.conf for configuring NetShare. The exact
number and names of configuration files depends on which components have
been enabled or loaded into the server.

However, this directory always contains three configuration files that are
essential for the server to operate. These files are:

• magnus.conf -- contains server initialization information.

• obj.conf -- contains instructions for handling requests from clients.

• mime.types -- contains information for determining the content type of
requested resources.

magnus.conf

This file sets values of variables that configure the server during initialization.
The server looks at this file and executes the settings on startup. The server
does not look at this file again until it is restarted.

See Appendix B, “Variables in magnus.conf,” for a list of all the variables that
can be set in magnus.conf.

obj.conf

This file contains additional initialization information, and also contains
instructions for the server about how to process requests from clients (such as
browsers). The server looks at this file every time it processes a request from a
client.

The obj.conf file is essential to the operation of the Enterprise Server. When
you make changes to server through the Server Manager interface, the system
automatically updates obj.conf.
10 NSAPI Programmer’s Guide for Enterprise Server 4.0

How the Server Handles Requests from Clients
The file obj.conf contains a series of instructions (directives) that tell the
Enterprise Server what to do at each stage in the request-response process.
Each directive invokes a Server Application Function (SAF). These functions are
written using the Netscape Server Application Programming Interface (NSAPI).
The Enterprise Server comes with a set of pre-defined SAFs, but you can also
write your own using NSAPI to create new instructions that modify the way the
server handles requests.

For more information about how the server uses obj.conf, see Chapter 2,
“Syntax and Use of Obj.conf.”.

mime.types

This file maps file extensions to MIME types, to enable the server to determine
the content type of a requested resource. For example, requests for resources
with .html extensions indicate that the client is requesting an HTML file, while
requests for resources with .gif extensions indicate that the client is requesting
an image file in GIF format.

The server loads the mime.types file when it starts up. If you make changes to
this file, you must restart the server before the changes will take effect.

For more information about how the server uses mime.types, see Appendix C,
“MIME Types.”.

How the Server Handles Requests from
Clients

Netscape Enterprise Server is a web server that accepts and responds to
HyperText Transfer Protocol (HTTP) requests. Browsers like Netscape
Communicator communicate using several protocols including HTTP, FTP, and
gopher. The Enterprise Server handles HTTP specifically.

For more information about the HTTP protocol refer to Appendix G,
“HyperText Transfer Protocol,”and also the latest HTTP specification.
 Basics of Enterprise Server Operation 11

How the Server Handles Requests from Clients
HTTP Basics

As a quick summary, the HTTP protocol works as follows:

• the client (usually a browser) opens a connection to the server and sends a
request

• the server processes the request, generates a response, and closes the
connection (or leaves the connection open and waits for another request if
it finds a Connection: Keep-alive header.)

The request consists of a line indicating a method such as GET or POST, a
Universal Resource Identifier (URI) indicating which resource is being
requested, and an HTTP protocol version separated by spaces.

This is normally followed by a number of headers, a blank line indicating the
end of the headers, and sometimes body data. Headers may provide various
information about the request or the client Body data is typically only sent for
POST and PUT methods.

The example request shown below would be sent by a Netscape browser to
request the server to send back the resource in /index.html. In this example,
no body data is sent because the method is GET (the point of the request is to
get some data, not to send it.)

GET /index.html HTTP/1.0
User-agent: Mozilla
Accept: text/html, text/plain, image/jpeg, image/gif, */*

The server receives the request and processes it. It handles each request
individually, although it may process many requests simultaneously. Each
request is broken down into a series of steps that together make up the request
handling process.

The server generates a response which includes the HTTP protocol version,
HTTP status code, and a reason phrase separated by spaces. This is normally
followed by a number of headers. The end of the headers is indicated by a
blank line. The body data of the response follows. A typical HTTP response
might look like this:

HTTP/1.0 200 OK
Server: Netscape Enterprise Server/4.0
Content-type: text/html
Content-length: 83
12 NSAPI Programmer’s Guide for Enterprise Server 4.0

How the Server Handles Requests from Clients
<HTML>
<HEAD><TITLE>Hello World</Title></HEAD>
<BODY>Hello World</BODY>
</HTML>

The status code and reason phrase tell the client how the server handled the
request. Normally the status code 200 is returned indicating that the request
was handled successfully and the body data contains the requested item. Other
result codes indicate redirection to another server or the browser’s cache, or
various types of HTTP errors such as 404 Not Found.

Steps in the Request Handling Process

When the server first starts up it performs some initialization and then waits for
an HTTP request from a client (such as a browser). When it receives a request,
it handles it in the following steps:

1. AuthTrans (authorization translation)

verify any authorization information (such as name and password) sent in
the request.

2. NameTrans (name translation)

translate the logical URI into a local file system path.

3. PathCheck (path checking)

check the local file system path for validity and check that the requestor has
access privileges to the requested resource on the file system.

4. ObjectType (object typing)

determine the MIME-type (Multi-purpose Internet Mail Encoding) of the
requested resource (for example. text/html, image/gif, and so on).

5. Service (generate the response)

generate and return the response to the client.

6. AddLog (adding log entries)

add entries to log file(s).
 Basics of Enterprise Server Operation 13

Using NSAPI to Write New Server Application Functions
7. Error (service)

This step is executed only if an error occurs in the previous steps. If an
error occurs, log an error message and abort the process.

Directives for Handling Requests

The file obj.conf contains a series of instructions, known as directives, that tell
the Enterprise Server what to do at each stage in the request handling process.
Each directive invokes a Server Application Function (SAF) with one or more
arguments. Each directive applies either to initialization or to a specific stage in
the request handling process. The stages are Init, AuthTrans, NameTrans,
PathCheck, ObjectType, Service, and AddLog.

For example, the following directive applies during the NameTrans stage. It
calls the document-root function with the root argument set to D:/
Netscape/Server4/docs. (The document-root function translates the
http://server_name/ part of the URL to the document root, which in this
example is D:/Netscape/Server4/docs.)

NameTrans fn="document-root" root="D:/Netscape/Server4/docs"

The functions invoked by the directives in obj.conf are known as Server
Application Functions (SAFs).

Using NSAPI to Write New Server
Application Functions

The Enterprise Server comes with a variety of pre-defined SAFs that you can
use to create more directives in obj.conf. You can also write your own SAFs
using the functions provided by the NSAPI. After writing a SAF, you would add
a directive to obj.conf so that your new function gets invoked by the server at
the appropriate time.

Each SAF has its own arguments, which are passed to it by the directive in
obj.conf. Every SAF is also passed additional arguments that contain
information about the request (such as what resource was requested and what
14 NSAPI Programmer’s Guide for Enterprise Server 4.0

Using NSAPI to Write New Server Application Functions
kind of client requested it) and any other server variables created or modified
by SAFs called by previously invoked directives. Each SAF may examine,
modify, or create server variables.

Each SAF returns a result code which tells the server whether it succeeded, did
nothing, or failed.

For more information about obj.conf, see Chapter 2, “Syntax and Use of
Obj.conf.”.

For more information on the pre-defined SAFs, see Chapter 3, “Predefined SAFS
for Each Stage in the Request Handling Process.”.

For more information on writing your own SAFs, see Chapter 4, “Creating
Custom SAFs.”
 Basics of Enterprise Server Operation 15

Using NSAPI to Write New Server Application Functions
16 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

2
Syntax and Use of Obj.conf
The obj.conf configuration file contains directives that instruct the Enterprise
Server how to handle requests from clients. This chapter discusses server
instructions in obj.conf; the use of OBJECT and CLIENT tags; the flow of
control in obj.conf; and the syntax rules for editing obj.conf.

The sections in this chapter are:

• Server Instructions in obj.conf

• Object and Client Tags

• Flow of Control in obj.conf

• Syntax Rules for Editing obj.conf

Server Instructions in obj.conf
The obj.conf file contains two kinds of directives:

• directives that initialize the Enterprise Server . These directives appear at
the start of the file, and are not embedded inside OBJECT tags.

• directives that instruct the server how to handle requests received from
clients such as browser. These directives appear inside OBJECT tags.

Each directive calls a function, indicating when to call it and specifying
arguments for it.
Chapter 2, Syntax and Use of Obj.conf 17

Server Instructions in obj.conf
The syntax of each directive is:

Directive fn=func-name name1="value1"...nameN="valueN"

For example:

NameTrans fn="document-root" root="D:/Netscape/Server4/docs"

Directive indicates when this instruction is executed, which is either during
server initialization or during a step in the request handling process. If it is to
be executed during server initialization, the value is Init. Otherwise the value
is one of AuthTrans, NameTrans, PathCheck, ObjectType, Service, Error,
and AddLog.

The value of the fn argument is the name of the Server Application Function to
execute. All directives must supply a value for the fn parameter -- if there’s no
function, the instruction won’t do anything.

The remaining parameters are the arguments needed by the function, and they
vary from function to function.

Enterprise Server is shipped with a set of built-in server application functions
(SAFs) such as load-types, basic-auth, and so on, that you can use to create
and modify directives in obj.conf. You can also define new SAFs, as discussed
in Chapter 4, “Creating Custom SAFs.”.

Summary of the Directives

Here are the categories of server directives and a description of what each
does. Each category corresponds to a stage in the request handling process
(except for the Init category which corresponds to the server initialization
stage).The section "Flow of Control in obj.conf" explains exactly how the server
decides which directive or directives to execute in at each stage.

• Init

Initializes server subsystems and shared resources. For example:

Init fn="load-types" mime-types="mime.types"

This example calls the function load-types to load the file mime.types,
which the server will use for looking up MIME types.

• AuthTrans
18 NSAPI Programmer’s Guide for Enterprise Server 4.0

Server Instructions in obj.conf
Verifies any authorization information (normally sent in the Authorization
header) provided in the HTTP request and translates it into a user and/or a
group. Server access control occurs in two stages. AuthTrans verifies the
authenticity of the user. Later, PathCheck tests the user’s access privileges
for the requested resource.

AuthTrans fn=basic-auth userfn=ntauth auth-type=basic
userdb=none

This example calls the basic-auth function, which calls a custom function
(in this case ntauth, to verify authorization information sent by the client.
The Authorization header is sent as part of the basic server authorization
scheme.

• NameTrans

Translates the URL specified in the request from a logical URL to a physical
file system path for the requested resource. This may also result in
redirection to another site. For example:

NameTrans fn="document-root" root="D:/Netscape/Server4/docs"

This example calls the document-root function with a root argument of
"D:/Netscape/Server4/docs". The function document-root function
translates the "http://server_name/" part of the requested to URL to the
document root, which in this case is D:/Netscape/Server4/docs. Thus a
request for http://server-name/doc1.html is translated to D:/
Netscape/Server4/docs/doc1.html.

• PathCheck

Performs tests on the physical path determined by the NameTrans step. In
general, these tests determine whether the path is valid and whether the
client is allowed to access the requested resource. For example:

PathCheck fn="find-index" index-names="index.html,home.html"

This example calls the find-index function with an index-names
argument of "index.html,home.html". If the requested URL is a
directory, this function instructs the server to look for a file called either
index.html or home.html in the requested directory.

• ObjectType

Determines the MIME (Multi-purpose Internet Mail Encoding) type of the
requested resource. The MIME type has attributes type (which indicates
content type), encoding and language. The MIME type is sent in the
headers of the response to the client. The MIME type also helps determine
which Service directive the server should execute.
 Syntax and Use of Obj.conf 19

Server Instructions in obj.conf
The resulting type may be:

• A common document type such as "text/html" or "image/gif" (for
example, the file name extension .gif translates to the MIME type
"image/gif").

• An internal server type. Internal types always begin with "magnus-
internal".

For example:

ObjectType fn="type-by-extension"

This example calls the type-by-extension function which causes the
server to determine the MIME type according to the requested resource’s
file extension.

• Service

Generates and sends the response to the client. This involves setting the
HTTP result status, setting up response headers (such as content-type and
content-length), and generating and sending the response data. The default
response is to invoke the send-file function to send the contents of the
requested file along with the appropriate header files to the client.

The default Service directive is:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file"

This directive instructs the server to call the send-file function in
response to any request whose method is GET, HEAD, or POST, and whose
type does not begin with magnus-internal/. (Note the use of the special
characters *~ to mean "does not match".)

Another example is:

Service method="(GET|HEAD)" type="magnus-internal/imagemap"
fn="imagemap"

In this case, if the method of the request is either GET or HEAD, and the type
of the requested resource is "magnus-internal/imagemap", the function
imagemap is called.

• AddLog

Adds an entry to a log file to record information about the transaction. For
example:

AddLog fn="flex-log" name="access"
20 NSAPI Programmer’s Guide for Enterprise Server 4.0

Object and Client Tags
This example calls the flex-log function to log information about the
current request in the log file named access.

• Error

Handles an HTTP error. This directive is invoked if a previous directive
results in an error. Typically the server handles an error by sending a
custom HTML document to the user describing the problem and possible
solutions.

For example:

Error fn="send-error" reason="Unauthorized"
path="D:/netscape/server4/errors/unauthorized.html"

In this example, the server sends the file in "D:/netscape/server4/
errors/unauthorized.html" whenever a client requests a resource that it
is not authorized to access.

Object and Client Tags
This section discusses the use of Object and Client tags in the file obj.conf.
Object tags group together directives that apply to requests for particular
resources, while Client tags group together directives that apply to requests
received from particular clients.

• The Object Tag

• The Client Tag

The Object Tag

Directives in the obj.conf file are grouped into objects that begin with an
<Object> tag and end with a </Object> tag. The default object provides
instructions to the server about how to process requests by default. Each new
object modifies the default object’s behavior.

An Object tag may have a name attribute or a ppath attribute. Either parameter
may be a wildcard pattern. For example:
<Object name="cgi">

or
<Object ppath="/usr/netscape/server4/docs/private/*">
 Syntax and Use of Obj.conf 21

Object and Client Tags
The server always starts handling a request by processing the directives in the
default object. However, the server switches to processing directives in another
object after the NameTrans stage of the default object if either of the following
conditions is true:

• The successful NameTrans directive specifies a name argument

• the physical pathname that results from the NameTrans stage matches the
ppath attribute of another object

When the server has been alerted to use an object other than the default object,
it processes the directives in the other object before processing the directives in
the default object. For some steps in the process, the server stops processing
directives in that a particular stage (such as the Service stage) as soon as one
is successfully executed, whereas for other stages the server processes all
directives in that stage, including the ones in the default object as well as those
in the additional object. For more details, see the section "Flow of Control in
obj.conf."

Objects that Use the Name Attribute

If a NameTrans directive in the default object specifies a name argument, the
server switches to processing the directives in the object of that name before
processing the remaining directives in the default object.

For example, the following NameTrans directive in the default object assigns
the name cgi to any request whose URL starts with http://server_name/
cgi/.

<Object name="default">
NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/mycgi"
name="cgi"
...
</Object>

When that NameTrans directive is executed, the server starts processing
directives in the object named cgi:

<Object name="cgi">
more directives...
</Object>
22 NSAPI Programmer’s Guide for Enterprise Server 4.0

Object and Client Tags
Object that Use the Ppath Attribute

When the server finishes processing the NameTrans directives in the default
object, the logical URL of the request will have been converted to a physical
pathname. If this physical pathname matches the ppath attribute of another
object in obj.conf, the server switches to processing the directives in that
object before processing the remaining ones in the default object.

For example, the following NameTrans directive translates the http://
server_name/part of the requested URL to D:/Netscape/Server4/docs/
(which is the document root directory).

<Object name="default">
NameTrans fn="document-root" root="D:/Netscape/Server4/docs"
...

</Object>

The URL http://server_name/internalplan1.html would be translated to
D:/Netscape/Server4/docs/internalplan1.html. However, suppose that
obj.conf contains the following additional object:

<Object ppath="*internal*">
more directives...
</Object>

In this case, the partial path *internal* matches the path D:/Netscape/
Server4/docs/internalplan1.html. So now the server starts processing the
directives in this object before processing the remaining directives in the default
object.

The Client Tag

The <Client> tag may be used within an object to limit a group of directives to
requests received from specific clients. Directives between a <Client> tag and
a matching </Client> tag are executed only if the client’s information matches
the <Client> parameters.

A <Client> tag may have parameters for ip, dns, and/or host. The value of
these parameters are wildcard patterns. For example:
<Client ip="198.95.251.*">

or
<Client dns="*.netscape.com">
 Syntax and Use of Obj.conf 23

Flow of Control in obj.conf
The directives in the <Client> block are only executed if the client that sent
the current request matches all the parameters.

The ip parameter is the IP address of the client. The dns parameter is the DNS
name of the client.

The host parameter is typically used to configure "software virtual servers."
These are multiple "virtual" servers on the same machine. There is really only
one web server running on the machine, but there may be many DNS names
which map to the machines IP address. The web server can tell which "virtual"
server was requested because clients such as Netscape browsers includes a
"Host" header in the request which tells the DNS name of the server that the
user requested.

Flow of Control in obj.conf
This section discusses how the server decides which directives to execute in
obj.conf.

Init

When the Enterprise Server starts up, it executes the variable settings defined in
magnus.conf, then executes the Init directives in obj.conf. The Init
section contains directives that initialize the server, such as loading and
initializing additional modules and plugins, and initializing log files.

The server executes all the directives in the Init section.

The Init section should always contain a directive that invokes the load-
types function. This function loads the MIME types file that the server uses to
create a table that maps file extensions to MIME types. The file is usually called
mime.types. We don’t recommend that you change the name of the MIME
types file since most people expect it to be called mime.types. The following
directive loads the MIME types file:

Init fn="load-types" mime-types="mime.types"
24 NSAPI Programmer’s Guide for Enterprise Server 4.0

Flow of Control in obj.conf
The most common way that the server determines the MIME type of a
requested resource is by invoking the type-by-extension directive in the
ObjectType section of obj.conf. This function will not work if the MIME
types file has not been loaded.

AuthTrans

When the server receives a request, it executes the AuthTrans directives in the
default object to check that the client is authorized to access the server.

If there is more than one AuthTrans directive, the server executes them all
(unless one of them results in an error). If an error occurs, the server skips all
other directives except for Error directives.

NameTrans

Next, the server executes a NameTrans directive in the default object to map
the logical URL of the requested resource to a physical pathname on the
server’s file system. The server looks at each NameTrans directive in the default
object in turn, until it finds one that can be applied.

If there is more than one NameTrans directive in the default object, the server
considers each directive until one succeeds.

The NameTrans section in the default object must contain exactly one directive
that invokes the document-root function. This functions translates the http:/
/server_name/part of the requested URL to a physical directory that has been
designated as the server’s document root. For example:

NameTrans fn="document-root" root="D:/Netscape/Server4/docs"

The directive that invokes document-root must be the last directive in the
NameTrans section so that it is executed if no other NameTrans directive is
applicable.

The pfx2dir (prefix to directory) function is used to set up additional
mappings between URLs and directories. For example, the following directive
translates the URL http://server_name/cgi/ into the directory pathname D:/
netscape/server4/docs/mycgi/:
NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/mycgi"
 Syntax and Use of Obj.conf 25

Flow of Control in obj.conf
Notice that if this directive appeared after the one that calls document-root, it
would never be executed, with the result that the resultant directory pathname
would be D:/netscape/server4/docs/cgi/ (not mycgi). This illustrates why the
directive that invokes document-root must be the last one in the NameTrans
section.

How the Server Knows to Process Other Objects

As a result of executing a NameTrans directive, the server might start processing
directives in another object. This happens if the NameTrans directive that was
successfully executed specifies a name or generates a partial path that matches
the name or ppath attribute of another object.

If the successful NameTrans directive assigns a name by specifying a name
argument, the server starts processing directives in the named object (defined
with the OBJECT tag) before processing directives in the default object for the
rest of the request handling process.

For example, the following NameTrans directive in the default object assigns
the name cgi to any request whose URL starts with http://server_name/
cgi/.

<Object name="default">
...
NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/mycgi"
name="cgi"
...
</Object>

When that NameTrans directive is executed, the server starts processing
directives in the object named cgi:

<Object name="cgi">
more directives...
</Object>

When a NameTrans directive has been successfully executed, there will be a
physical pathname associated with the requested resource. If the resultant
pathname matches the ppath (partial path) attribute of another object, the
server starts processing directives in the other object before processing
directives in the default object for the rest of the request handling process.

For example, suppose obj.conf contains an object as follows:

<Object ppath="*internal*">
more directives...
26 NSAPI Programmer’s Guide for Enterprise Server 4.0

Flow of Control in obj.conf
</Object>

Now suppose the successful NameTrans directive translates the requested URL
to the pathname D:/Netscape/Server4/docs/internalplan1.html. In this
case, the partial path *internal* matches the path D:/Netscape/Server4/
docs/internalplan1.html. So now the server would start processing the
directives in this object before processing the remaining directives in the default
object.

PathCheck

After converting the logical URL of the requested resource to a physical
pathname in the NameTrans step, the server executes PathCheck directives to
verify that the client is allowed to access the requested resource.

If there is more than one PathCheck directive, the server executes all the
directives in the order in which they appear, unless one of the directives denies
access. If access is denied, the server switches to executing directives in the
Error section.

If the NameTrans directive assigned a name or generated a physical pathname
that matches the name or ppath attribute of another object, the server first
applies the PathCheck directives in the matching object before applying the
directives in the default object.

ObjectType

Assuming that the PathCheck directives all approve access, the server next
executes the ObjectType directives to determine the MIME type of the request.
The MIME type has three attributes: type, encoding, and language. When the
server sends the response to the client, the type, language, and encoding values
are transmitted in the headers of the response. The type also frequently helps
the server to determine which Service directive to execute to generate the
response to the client.

If there is more than one ObjectType directive, the server applies all the
directives in the order in which they appear. However, once a directive sets an
attribute of the MIME type, further attempts to set the same attribute are
 Syntax and Use of Obj.conf 27

Flow of Control in obj.conf
ignored. The reason that all ObjectType directives are applied is that one
directive may set one attribute, for example type, while another directive sets a
different attribute, such as language.

As with the PathCheck directives, if another object has been matched to the
request as a result of the NameTrans step, the server executes the ObjectType
directives in the matching object before executing the ObjectType directives in
the default object.

Setting the Type By File Extension

Usually the default way the server figures out the MIME type is by calling the
type-by-extension function. This function instructs the server to look up the
MIME type according to the requested resource’s file extension in the MIME
types table. This table was created during the Init stage by the load-mime-
types function, which loads the MIME types file, (which is usually called
mime.types).

For example, the entry in the MIME types table for the extensions .html
and.htm is usually:

type=text/html exts=htm,html

which says that all files that have the extension .htm or .html are text files
formatted as HTML and the type is text/html.

Note that since the server creates the MIME types table during initialization, if
you make changes to the MIME types file, you must restart the server before
those changes can take effect.

For more information about MIME types, see Appendix C, “MIME Types.”

Forcing the Type

If no previous ObjectType directive has set the type, and the server does not
find a matching file extension in the MIME types table, the type still has no
value even after type-by-expression has been executed. Usually if the server
does not recognize the file extension, it is a good idea to force the type to be
text/plain, so that the content of the resource is treated as plain text. There
are also other situations where you might want to set the type regardless of the
file extension, such as forcing all resources in the designated CGI directory to
have the MIME type magnus-internal/cgi.
28 NSAPI Programmer’s Guide for Enterprise Server 4.0

Flow of Control in obj.conf
The function that forces the type is force-type.

For example, the following directives first instruct the server to look in the
MIME types table for the MIME type, then if the type attribute has not been set
(that is, the file extension was not found in the MIME types table), set the type
attribute to text/plain.

ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"

If the server receives a request for a file abc.dogs, it looks in the MIME types
table, does not find a mapping for the extension .dogs, and consequently does
not set the type attribute. Since the type attribute has not already been set, the
second directive is successful, forcing the type attribute to text/plain.

The following example illustrates another use of force-type. In this example,
the type is forced to magnus-internal/cgi before the server gets a chance to
look in the MIME types table. In this case, all requests for resources in http://
server_name/cgi/ are translated into requests for resources in the directory
D:/netscape/server4/docs/mycgi/. Since a name is assigned to the request, the
server processes ObjectType directives in the object named cgi before
processing the ones in the default object. This object has one ObjectType
directive, which forces the type to be magnus-internal/cgi.

NameTrans fn="pfx2dir" from="/cgi" dir="D:/netscape/server4/docs/mycgi"
name="cgi"

<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"
</Object>

The server continues processing all ObjectType directives including those in
the default object, but since the type attribute has already been set, no other
directive can set it to another value.

Service

Next, the server needs to execute a Service directive to generate the response
to send to the client. The server looks at each Service directive in turn, to find
the first one that matches the type, method and query string. If a Service
directive does not specify type, method, or query string, then the unspecified
attribute matches anything.
 Syntax and Use of Obj.conf 29

Flow of Control in obj.conf
If there is more than one Service directive, the server applies the first one that
matches the conditions of the request, and ignores all remaining Service
directives.

As with the PathCheck and ObjectType directives, if another object has been
matched to the request as a result of the NameTrans step, the server considers
the Service directives in the matching object before considering the ones in
the default object. If the server successfully executes a Service directive in the
matching object, it will not get round to executing the Service directives in the
default object, since it only executes one Service directive.

Service Examples

For an example of how Service directives work, consider what happens when
the server receives a request for the URL D:/server_name/jos.html. In this
case, all directives executed by the server are in the default object.

• The following NameTrans directive translates the requested URL to D:/
netscape/server4/docs/jos.html:

NameTrans fn="document-root" root="D:/Netscape/Server4/docs"

• Assume that the PathCheck directives all succeed.

• The following ObjectType directive tells the server to look up the
resource’s MIME type in the MIME types table:

ObjectType fn="type-by-extension"

• The server finds the following entry in the MIME types table, which sets the
type attribute to text/html:

type=text/html exts=htm,html

• The server invokes the following Service directive. The value of the type
parameter matches anything that does not begin with magnus-internal/.
(For a list of all wildcard patterns, see Appendix D, “Wildcard Patterns.”)
This directive sends the requested file, jos.html, to the client.

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file""

For an example that involves using another object, consider what happens
when the server receives a request for http://server_name/servlet/
doCalculation.class. This example assumes that servlets have been
30 NSAPI Programmer’s Guide for Enterprise Server 4.0

Flow of Control in obj.conf
activated and the directory D://netscape/server4/docs/servlet/ has been
registered as a servlet directory (that is, the server treats all files in that directory
as servlets).

• The following NameTrans directive translates the requested URL to
D:netscape/Server4/docs/servlet/doCalculation.class. This
directive also assigns the name ServletByExt to the request.

NameTrans fn="pfx2dir" from="/servlet"
dir="D:/Netscape/Server4/docs/servlet" name="ServletByExt"

• As a result of the name assignment, the server switches to processing the
directives in the object named ServletByExt. This object is defined as:

<Object name="ServletByExt">
ObjectType fn="force-type" type="magnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServletService"
</Object>

• The ServletByExt object has no PathCheck directives, so the server
processes the PathCheck directives in the default object. Let’s assume that
all PathCheck directives succeed.

• Next, the server processes the ObjectType directives, starting with the one
in the ServletByExt object. This directive sets the type attribute to
magnus-internal/servlet.

ObjectType fn="force-type" type="magnus-internal/servlet"

The server continues processing all the ObjectType directives in the
default object, but since the type attribute is already set its value cannot be
changed.

• When processing Service directives, the server starts by considering the
Service directive in the ServletByExt object which is:

Service type="magnus-internal/servlet" fn="NSServletService"

• The type argument of this directive matches the type value that was set by
the ObjectType directive. So the server goes ahead and executes this
Service directive which calls the NSServletService function. This
function invokes the requested file as a servlet and sends the output from
the servlet as the response to the client. (If the requested resource is not a
servlet, an error occurs.)
 Syntax and Use of Obj.conf 31

Flow of Control in obj.conf
Since a Service directive has now been executed, the server does not
process any other Service directives. (However, if the matching object had
not had a Service directive that was executed, the server would continue
looking at Service directives in the default object.)

Default Service Directive

There is usually a Service directive that does the default thing (sends a file) if
no other Service directive matches a request sent by a browser. This default
directive should come last in the list of Service directives in the default object,
to ensure it only gets called if no other Service directives have succeeded. The
default Service directive is usually:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file"

This directive matches requests whose method is GET, HEAD, or POST, which
covers nearly virtually all requests sent by browsers. The value of the type
argument uses special pattern-matching characters. For complete information
about the special pattern-matching characters, see Appendix D, “Wildcard
Patterns.”.

The characters "*~" mean "anything that doesn’t match the following
characters", so the expression "*~magnus-internal/" means "anything that
doesn’t match "magnus-internal/". An asterisk by itself matches anything, so
the whole expression "*~magnus-internal/*" matches anything that does not
begin with "magnus-internal/".

So if the server has not already executed a Service directive when it reaches
this directive, it executes the directive so long as the request method is GET,
HEAD or POST, and the value of the type attribute does not begin with
"magnus-internal/". The invoked function is send-file, which simply sends
the contents of the requested file to the client.

AddLog

After the server generate the response and sends it to the client, it executes
AddLog directives to add entries to the log files.

All AddLog directives are executed. The server can add entries to multiple log
files.
32 NSAPI Programmer’s Guide for Enterprise Server 4.0

Syntax Rules for Editing obj.conf
Depending on which log files are used and which format they use, the Init
section may need to have directives that initialize the logs. For example, if one
of the AddLog directives calls flex-log, which uses the extended log format,
the Init section must contain a directive that invokes flex-init to initialize
the flexible logging system.

For more information about initializing logs, see the discussion of the functions
flex-init and init-clf in Chapter 3, “Predefined SAFS for Each Stage in the
Request Handling Process.”

Error

If an error occurs during the request handling process, such as if a PathCheck
or AuthTrans directive denies access to the requested resource, or the
requested resource does not exist, then the server immediately stops executing
all other directives and immediately starts executing the Error directives.

Syntax Rules for Editing obj.conf
Several rules are important in the obj.conf file. Be very careful when editing
this file. Simple mistakes can make the server fail to start or operate incorrectly.

Order of Directives

The order of directives is important, since the server executes them in the order
they appear in obj.conf . The outcome of some directives affect the execution
of other directives.

For PathCheck directives, the order within the PathCheck section is not so
important, since the server executes all PathCheck directives. However, in the
ObjectType section the order is very important, because if an ObjectType
directive sets an attribute value, no other ObjectType directive can change that
value. For example, if the default ObjectType directives were listed in the
following order (which is the wrong way round), every request would have its
type value set to text/plain, and the server would never have a chance to
set the type according to the extension of the requested resource.
 Syntax and Use of Obj.conf 33

Syntax Rules for Editing obj.conf
ObjectType fn="force-type" type="text/plain"
ObjectType fn="type-by-extension"

Similarly, the order of directives in the Service section is very important. The
server executes the first Service directive that matches the current request and
does not execute any others.

Parameters

The number and names of parameters depends on the function. The order of
parameters on the line is not important.

Case Sensitivity

Items in the obj.conf file are case-sensitive including function names,
parameter names, many parameter values, and path names.

Separators

The "C" language allows function names to be composed only of letters, digits,
and underscores. You may use the hyphen (-) character in the configuration file
in place of underscore (_) for your "C" code function names. This is only true
for function names.

Quotes

Quotes (") are only required around value strings when there is a space in the
string. Otherwise they are optional. Each open-quote must be matched by a
close-quote.
34 NSAPI Programmer’s Guide for Enterprise Server 4.0

Syntax Rules for Editing obj.conf
Spaces

Spaces are not allowed at the beginning of a line except when continuing the
previous line. Spaces are not allowed before or after the equal (=) sign that
separates the name and value. Spaces are not allowed at the end of a line or on
a blank line.

Line Continuation

A long line may be continued on the next line by beginning the next line with
a space or tab.

Path Names

Always use forward slashes (/) rather than back-slashes (\) in path names
under Windows NT. Back-slash escapes the next character.

Comments

Comments begin with a pound (#) sign. If you manually add comments to
obj.conf, then use the Server Manager interface to make changes to your
server, the Server Manager will wipe out your comments when it updates
obj.conf.
 Syntax and Use of Obj.conf 35

Syntax Rules for Editing obj.conf
36 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

3
Predefined SAFS for Each Stage in the

Request Handling Process
This chapter describes the directives and pre-defined Server Application
Functions (SAFs) that are provided as standard with the Enterprise Server. They
are used in the obj.conf file to give instructions to the server. For a discussion
of the use and syntax of obj.conf, see the previous chapter, Chapter 2,
“Syntax and Use of Obj.conf.”

This chapter includes functions that are part of the core functionality of
Enterprise Server. It does not include functions that are available only if
additional components, such as servlets, web publishing, WAI, and server-
parsed HTML are enabled.

The functions and arguments described here are applicable to Enterprise 3.x
and 4.0. Functions and arguments that are new to Enterprise Server 4.0 are
indicated as such.

This chapter contains a section for each directive which lists all the pre-defined
Server Application Functions that can be used with that directive.

The directives are:
• Init Stage

• AuthTrans Stage

• NameTrans Stage

• PathCheck Stage

• ObjectType Stage

• Service Stage

• AddLog Stage

• Error Stage

For an alphabetical list of pre-defined SAFs, see Appendix J, “Alphabetical List
of Pre-defined SAFs.”
Chapter 3, Predefined SAFS for Each Stage in the Request Handling

The following table lists the SAFs that can be used with each directive.

Table 3.1

Init Stage cache-init
cindex-init
dns-cache-init
flex-init
flex-rotate-init
init-cgi
init-clf
init-uhome
load-modules
load-types
pool-init
thread-pool-init

AuthTrans Stage basic-auth
basic-ncsa
get-sslid

NameTrans Stage assign-name
document-root
home-page
pfx2dir
pfx2dir
redirect
unix-home

PathCheck Stage cert2user
check-acl
deny-existence
find-index
find-links
find-pathinfo
get-client-cert
load-config
nt-uri-clean
ntcgicheck
require-auth
ssl-check
ssl-logout
unix-uri-clean
38 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
Init Stage
Init directives are invoked during server initialization when the server is
started or restarted. These directives perform tasks such as initializing log files
and loading plugins.

ObjectType Stage force-type
image-switch
shtml-hacktype
type-by-exp
type-by-extension

Service Stage add-footer
add-header
append-trailer
imagemap
index-common
index-simple
key-toosmall
list-dir
make-dir
parse-html
query-handler
remove-dir
remove-file
rename-file
send-cgi
send-file
send-range
send-shellcgi
send-wincgi
upload-file

AddLog Stage common-log
flex-log
record-useragent

Error Stage send-error

Table 3.1
 Predefined SAFS for Each Stage in the Request Handling Process 39

Init Stage
On Unix platforms, each Init directive has an optional LateInit parameter. If
it is set to "yes" or is not provided, the function is executed by the child
process after it is forked from the parent. If it is set to "no", the function is
executed by the parent process before the fork. Any activities that must be
performed as the user root (such as writing to a root-owned file) must be done
before the fork. Any activities involving the creation of threads must be
performed after the fork.

Upon failure, Init-class functions return REQ_ABORTED. The server logs the
error according to the instructions in the Error directives, and terminates. Any
other result code is considered a success.

The following Init-class functions are described in detail in this section:

• cache-init configures server caching for increased performance.

• cindex-init changes the default characteristics for fancy indexing.

• dns-cache-init configures DNS caching.

• flex-init initializes the flexible logging system.

• flex-rotate-init enables rotation for flexible logs.

• init-cgi changes the default settings for CGI programs.

• init-clf initializes the Common Log subsystem.

• init-uhome loads user home directory information.

• load-modules loads shared libraries into the server.

• load-types loads file extension to MIME type mapping information.

• pool-init configures pooled memory allocation.

• thread-pool-init configures an additional thread pool.

cache-init

Applicable in Init-class directives.

The cache-init function controls file caching for static files, such as HTML
pages, GIF files and sound files. The server caches files to improve
performance. If a request is received for a file that is in the cache, the server
retrieves the requested resource from the cache, which is more efficient than
retrieving it from its source. File caching is enabled by default.

To optimize server speed, you should ideally have enough RAM for the server
and cache because swapping can be slow. Do not allocate a cache that is
greater in size than the amount of memory on the system.
40 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
Files can be cached in various ways. Small files might be read into the heap
space; larger files might be cached using memory-mapping; and in some
circumstance files might be cached as open file descriptors.

Note In Enterprise Server 4.0, much of the functionality of the file cache is controlled
by a new configuration file called nsfc.conf. For information about
nsfc.conf, see the tuning chapter in the Administrator’s Guide for Enterprise
Server 4.0.

Parameters:
disable (optional) specifies whether the file cache is disabled or

not. If set to anything but "false" the cache is disabled. By
default, the cache is enabled.

PollInterval (optional) specifies how often the files in the cache are
checked for changes. The default is 5 seconds. In
Enterprise Server 4.0, this parameter is ignored -- use the
MaxAge parameter in the nsfc.conf file instead.

MaxNumberOfCachedFil
es

 (optional) maximum number of entries in the accelerator
cache. The default is 4096, minimum is 32, maximum is
32K.

MaxNumberOfOpenCache
dFiles

(optional) Maximum number of memory-mapped cached
files that can be open simultaneously.

The default is 512, minimum is 32, maximum is 32.

MaxCachedFileSize (optional) maximum size of a file that can be cached as a
memory-mapped file.

The default is 525K.

In Enterprise Server 4.0, this parameter is ignored. Use the
MediumFileSizeLimit parameter in nsfc.conf
instead.

In Enterprise Server 4.0, this parameter is ignored on NT
because it no longer applies to the platform.

MaxTotalCachedFileSi
ze

(optional) total size of all files that are cached as memory-
mapped files. Default is 10K, minimum is 1K, maximum is
16M.

In Enterprise Server 4.0, this parameter is ignored on Unix.
Use the MediumFileSpace parameter in nsfc.conf
instead.

In Enterprise Server 4.0, this parameter is ignored on NT
because it no longers applies to the platform.
 Predefined SAFS for Each Stage in the Request Handling Process 41

Init Stage
Example

CacheHashSize (optional) size of hash table for the file cache accelerator.
Default is 8192K, minimum is 32, max is 32K.

Init fn=cache-init PollIntervale=2
MaxNumberOfCachedFiles=8192
42 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
cindex-init

Applicable in Init-class directives.

The function cindex-init sets the default settings for common indexing.
Common indexing (also known as fancy indexing) is performed by the Service
function index-common. Indexing occurs when the requested URL translates to
a directory that does not contain an index file or home page, or no index file or
home page has been specified.

In common (fancy) indexing, the directory list shows the name, last modified
date, size and description for each indexed file or directory.

Parameters:
opts (optional) is a string of letters specifying the options to

activate. Currently there is only one possible option:

• s tells the server to scan each HTML file in the directory
being indexed for the contents of the HTML <TITLE>
tag to display in the description field. The <TITLE> tag
must be within the first 255 characters of the file. This
option is off by default.

Note: In Enterprise Server 3.x and previously, the search for
the <TITLE> tag is case sensitive. In Enterprise Server 4.x,
the search is no longer case-sensitive.
 Predefined SAFS for Each Stage in the Request Handling Process 43

Init Stage
Examples

widths (optional) specifies the width for each column in the
indexing display. The string is a comma-separated list of
numbers that specify the column widths in characters for
name, last-modified date, size, and description respectively.

Note: In Enterprise Server 3.x and previous versions, the
widths parameter does not work properly. It basically acts
as a flag, since the actual widths (for non-zero values) are
hardcoded. However, in Enterprise Server 4.x, the widths
parameter works correctly. The default values in Enterprise
Server 4.0 are 22,18,8,33.

The final three values (corresponding to last-modified date,
size, and description respectively) can each be set to 0 to
turn the display for that column off. The name column
cannot be turned off. The minimum size of a column (if
the value is non-zero) is specified by the length of its title -
- for example, the minimum size of the Date column is 5
(the length of "Date" plus one space). If you set a non-zero
value for a column which is less than the length of its title,
the width defaults to the minimum required to display the
title.

timezone (optional) Enterprise Server 4.x only. This indicates
whether the last-modified time is shown in local time or in
Greenwich Mean Time. The values are GMT or local. The
default is local.

format (optional) Enterprise Server 4.x only. This parameter
determines the format of the last modified date display. It
uses the format specification for the UNIX function
strftime().

The default is "%d-%b-%Y %H:%M"

ignore (optional) specifies a wildcard pattern for file names the
server should ignore while indexing. File names starting
with a period (.) are always ignored. The default is to only
ignore file names starting with a period (.).

icon-uri (optional) specifies the URI prefix the index-common
function uses when generating URLs for file icons (.gif
files). By default, it is /mc-icons/. If icon-uri is
different from the default, the pfx2dir function in the
NameTrans directive must be changed so that the server
can find these icons.

Init fn=cindex-init widths=50,1,1,0
44 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
See Also index-common, find-index, home-page

dns-cache-init

Applicable in Init-class directives.

The dns-cache-init function specifies that DNS lookups should be cached
when DNS lookups are enabled. If DNS lookups are cached, then when the
server gets a client’s host name information, it stores that information in the
DNS cache. If the server needs information about the client in the future, the
information is available in the DNS cache.

You may specify the size of the DNS cache and the time it takes before a cache
entry becomes invalid. The DNS cache can contain 32 to 32768 entries; the
default value is 1024 entries. Values for the time it takes for a cache entry to
expire (specified in seconds) can range from 1 second to 1 year; the default
value is 1200 seconds (20 minutes).

Parameters

Example

flex-init

Applicable in Init-class directives.

The flex-init function opens the named log file to be used for flexible
logging and establishes a record format for it. The log format is recorded in the
first line of the log file. You cannot change the log format while the log file is in
use by the server.

Init fn=cindex-init ignore=*private*

Init fn=cindex-init widths=22,0,0,50

cache-size (optional) specifies how many entries are contained in the
cache. Acceptable values are 32 to 32768; the default value
is 1024.

expire (optional) specifies how long (in seconds) it takes for a
cache entry to expire. Acceptable values are 1 to 31536000
(1 year); the default is 1200 seconds (20 minutes).

Init fn="dns-cache-init" cache-size="2140" expire="600"
 Predefined SAFS for Each Stage in the Request Handling Process 45

Init Stage
The flex-log function writes entries into the log file during the AddLog stage
of the request handling process.

The log file stays open until the server is shut down or restarted (at which time
all logs are closed and reopened).

Note: If the server has AddLog Stage directives that call flex-log, the flexible
log file must be initialized by flex-init during server initialization.

You may specify multiple log file names in the same flex-init function call.
Then use multiple AddLog directives with the flex-log function to log
transactions to each log file.

The flex-init function may be called more than once. Each new log file
name and format will be added to the list of log files.

If you move, remove, or change the log file without shutting down or restarting
the server, client accesses might not be recorded. To save or backup a log file,
you need to rename the file and then restart the server. The server first looks
for the log file by name, and if it doesn’t find it, creates a new one (the
renamed original log file is left for you to use). The exception to this rule is if
log rotation has been enabled in Enterprise Server 4.0.

For information on rotating log files, see flex-rotate-init.

The flex-init function has three parameters: one that names the log file, one
that specifies the format of each record in that file, and one that specifies the
logging mode.

Parameters
logFileName The name of the parameter is the name of the log file. The

value of the parameter specifies either the full path to the
log file or a file name relative to the server’s logs
directory. For example:

access="/usr/netscape/server4/https-
servername/logs/access"

mylogfile = "log1"

You will use the log file name later, as a parameter to the
flex-log function.

format.logFileName specifies the format of each log entry in the log file.

For information about the format, see the section "More on
Log Format" below.
46 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
More on Log
Format

The flex-init function recognizes anything contained between percent signs
(%) as the name portion of a name-value pair stored in a parameter block in the
server. (The one exception to this rule is the %SYSDATE% component which
delivers the current system date.) %SYSDATE% is formatted using the time
format "%d/%b/%Y:%H:%M:%S" plus the offset from GMT.

(See Chapter 4, “Creating Custom SAFs” for more information about
parameter blocks and Chapter 5, “NSAPI Function Reference” for functions
to manipulate pblocks.)

Any additional text is treated as literal text, so you can add to the line to
make it more readable. Typical components of the formatting parameter are
listed in Table 3.2. Certain components might contain spaces, so they
should be bounded by escaped quotes (\")

If no format parameter is specified for a log file, the common log format is
used:

"%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]
\"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"

New in Enterprise Server 4.0: you can now log cookies by logging the
Req->headers.cookie.name component.

Enterprise Server can use cache acceleration for serving static pages (as
discussed in cache-init). However, some components of log format
entries block this acceleration (unless the logging mode is relaxed) causing
the server to use the unaccelerated path for serving static pages. (The server
always uses the unaccelerated path to serve dynamically-generated pages.)
The following table indicates which components of the log format entry
allow static page acceleration to proceed for the current request. If the log

relaxed.logFileName New in Enterprise Server 4.0.

If you turn on relaxed logging and the logged component
is one that would normally block static page acceleration,
the server skips logging the component (instead it puts a
blank in the log file) if static page acceleration is enabled.
However, if static page acceleration is not enabled, the
server logs the full value of the component.

If the value is "true", "on", "yes" or "1" relaxed
logging is on otherwise it is off.
 Predefined SAFS for Each Stage in the Request Handling Process 47

Init Stage
format uses any components that do not allow static page acceleration, the
performance of serving static pages may decrease significantly (unless the
logging mode is relaxed).

In the following table, the components that are enclosed in escaped double
quotes (\") are the ones that could potentially resolve to values that have
white spaces.

Table 3.2 Typical components of flex-init formatting

Flex-log option Component Allows static page
acceleration

Client Host
name (unless
"iponly" is
specified in flex-
log or DNS
name is not
available) or IP
address

%Ses->client.ip% Yes

Client DNS name %Ses->client.dns% Yes

System date %SYSDATE% Yes

Full HTTP
request line

\"%Req->reqpb.clf-request%\" Yes

Status %Req->srvhdrs.clf-status% Yes

Response
content length

%Req->srvhdrs.content-length% Yes

Response
content type

%Req->srvhdrs.content-type% Yes

Referer header \"%Req->headers.referer%\" Yes

User-agent
header

\"%Req->headers.user-agent%\" Yes

HTTP Method %Req->reqpb.method% Yes

HTTP URI %Req->reqpb.uri% Yes
48 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
Examples The first example below initializes flexible logging into the file /usr/
netscape/server4/https-servername/logs/access.

HTTP query
string

%Req->reqpb.query% Yes

HTTP protocol
version

\"%Req->reqpb.protocol%\" Yes

Accept header %Req->headers.accept% No

Date header \"%Req->headers.date%\" No

If-Modified-Since
header

%Req->headers.if-modified-
since%

No

Authorization
header

%Req->headers.authorization% Yes

Any header
value

\"%Req->headers.headername%\" No (unless
otherwise
indicated for
specific header
names)

Name of
authorized user

%Req->vars.auth-user% Yes

Value of a
cookie

\"%Req->headers.cookie.name%\" No

Value of any
variable
in Req->vars

\"%Req->vars.varname%\" No

Table 3.2 Typical components of flex-init formatting

Flex-log option Component Allows static page
acceleration

Init fn=flex-init access="/usr/netscape/server4/https-
servername/logs/access"
format.access="%Ses->client.ip% - %Req->vars.auth-user%
[%SYSDATE%] \"%Req->reqpb.clf-request%\" %Req-
>srvhdrs.clf-status% %Req->srvhdrs.content-length%"
 Predefined SAFS for Each Stage in the Request Handling Process 49

Init Stage
This will record the following items

This is the default format, which corresponds to the Common Log Format
(CLF).

It is advisable that the first six elements of any log always be in exactly this
format, because a number of log analyzers expect that as output.

The following example initializes flexible logging into the file /user/
netscape/server4/https-servername/logs/extended.

See Also flex-rotate-init, flex-log

flex-rotate-init

Applicable in Init-class directives. New in Enterprise Server 4.0.

The flex-rotate-init function enables log rotation for logs that use the
flexible logging format. Call this function in the Init stage of obj.conf before
calling flex-init. The flex-rotate-init function allows you to specify a
time interval for rotating log files. At the specified time interval, the server
moves the log file to a file whose name indicates the time of moving. The
flex-log function in the AddLog stage then starts logging entries in a new log
file. The server does not need to be shut down while the log files are being
rotated.

• ip or hostname, followed by the three characters " - "

• the user name, followed by the two characters " ["

• the system date, followed by the two characters "] "

• the full HTTP request in quotes, followed by a single space

• the HTTP result status in quotes, followed by a single space

• the content length

Init fn=flex-init extended="/usr/netscape/server4/
https-servername/logs/extended"
format.extended="%Ses->client.ip% - %Req->vars.auth-
user% [%SYSDATE%] \"%Req->reqpb.clf-request%\" %Req-
>srvhdrs.clf-status% %Req->srvhdrs.content-length%
%Req->headers.referer% \"%Req->headers.user-agent%\"
%Req->reqpb.method% %Req->reqpb.uri% %Req->reqpb.query%
%Req->reqpb.protocol%"
50 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
Note that the server keeps all rotated log files forever, so you will need to clean
them up as necessary to free up disk space.

By default, log rotation is disabled.

Parameters

Example This example enables log rotation, starting at midnight and occurring every
hour.

See Also flex-init, flex-log

init-cgi

Applicable in Init-class directives.

The init-cgi function performs certain initialization tasks for CGI execution.
Two options are provided: timeout of the execution of the CGI script, and
establishment of environment variables.

Parameters

Example

rotate-start Indicates the time to start rotation. This value is a 4 digit
string indicating the time in 24 hour format, for example,
0900 indicates 9 am while 1800 indicates 9 pm.

rotate-interval Indicates the number of minutes to elapse between each
log rotation.

Init fn=flex-rotate-init rotate-start=2400
rotate-intervals=60

timeout (optional) specifies how many seconds the server waits for
CGI output. If the CGI script has not delivered any output
in that many seconds, the server terminates the script. The
default is 300 seconds.

env-variable (optional) specifies the name and value for an environment
variable that the server places into the environment for the
CGI. You can set any number of environment variables in a
single init-cgi function.

Init fn=init-cgi LD_LIBRARY_PATH=/usr/lib;/usr/local/lib
 Predefined SAFS for Each Stage in the Request Handling Process 51

Init Stage
See Also send-cgi, send-wincgi, send-shellcgi

init-clf

Applicable in Init-class directives.

The init-clf function opens the named log files to be used for common
logging. The common-log function writes entries into the log files during the
AddLog stage of the request handling process. The log files stay open until the
server is shut down (at which time the log files are closed) or restarted (at
which time the log files are closed and reopened).

Note: If the server has an AddLog Stage directive that calls common-log,
common log files must be initialized by init-clf during the Init stage.

Note: This function should only be called once. If it is called again, the new
call will replace log file names from all previous calls.

If you move, remove, or change the log file without shutting down or restarting
the server, client accesses might not be recorded. To save or backup a log file,
you need to rename the file (and for Unix, send the -HUP signal) and then
restart the server. The server first looks for the log file by name, and if it doesn’t
find it, creates a new one (the renamed original log file is left for you to use).

Parameters

Examples

See Also common-log, record-useragent

logFileName The name of the parameter is the name of the log file. The
value of the parameter specifies either the full path to the
log file or a file name relative to the server’s logs
directory. For example:

access="/usr/netscape/server4/https-
servername/logs/access"
mylogfile = "log1"

You will use the log file name later, as a parameter to the
common-log function.

Init fn=init-clf
access=/usr/netscape/server4/https-boots/logs/access

Init fn=init-clf
templog=/tmp/mytemplog templog2=/tmp/mytemplog2
52 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
init-uhome

Applicable in Init-class directives.

Unix Only. The init-uhome function loads information about the system’s
user home directories into internal hash tables. This increases memory usage
slightly, but improves performance for servers that have a lot of traffic to home
directories.

Parameters

Examples

See Also unix-home, find-links

load-modules

Applicable in Init-class directives.

The load-modules function loads a shared library or Dynamic Link Library
into the server code. Specified functions from the library can then be executed
from any subsequent directives. Use this function to load new plugins or SAFs.

If you define your own Server Application Functions, you get the server to load
them by using the load-modules function and specifying the shared library or
dll to load.

Parameters

pwfile (optional) specifies the full file system path to a file other
than /etc/passwd. If not provided, the default Unix path
(/etc/passwd) is used.

Init fn=init-uhome

Init fn=init-uhome pwfile=/etc/passwd-http

shlib specifies either the full path to the shared library or
dynamic link library or a file name relative to the server
configuration directory.

funcs is a comma separated list of the names of the functions in
the shared library or dynamic link library to be made
available for use by other Init or Service directives in
obj.conf. The list should not contain any spaces. The
dash (-) character may be used in place of the underscore
(_) character in function names.
 Predefined SAFS for Each Stage in the Request Handling Process 53

Init Stage
Examples

load-types

Applicable in Init-class directives.

The load-types function loads the file that the server uses to look up mime
types.

More explicitly, this function uses the indicated file to create a table that maps
file-name extensions to a file’s content-type , content-encoding, and content-
language. During the ObjectType phase, the function type-by-extension
instructs the server to look in this table to determine the type of content
requested by the client, based on the extension of the requested resource.

If you edit the MIME types file, you will need to restart the server to load the
changes.

The file name extensions are not case-sensitive.

This function must be called in order for the type-by-extension and type-
by-exp SAFs , and the cinfo_find() NSAPI functions to work properly.

Note: MIME types files must begin with the following line or they will not be
accepted:#--Netscape Communications Corporation MIME Information

NativeThread (optional) specifies which threading model to use.

• no causes the routines in the library to use user-level
threading.

• yes enables kernel-level threading. The default is yes.

pool the name of a custom thread pool, as specified in thread-
pool-init.

Init fn=load-modules shlib="C:/mysrvfns/corpfns.dll"
funcs="moveit"

Init fn=load-modules shlib="/mysrvfns/corpfns.so"
funcs="myinit,myservice"
Init fn=myinit
54 NSAPI Programmer’s Guide for Enterprise Server 4.0

Init Stage
Parameters

Examples

See Also type-by-extension, type-by-exp, force-type

pool-init

Applicable in Init-class directives.

The pool-init function changes the default values of pooled memory settings.
The size of the free block list may be changed or pooled memory may be
entirely disabled.

Memory allocation pools allow the server to run significantly faster. If you are
programming with the NSAPI, note that MALLOC, REALLOC, CALLOC, STRDUP,
and FREE work slightly differently if pooled memory is disabled. If pooling is
enabled, the server automatically cleans up all memory allocated by these
routines when each request completes. In most cases, this will improve
performance and prevent memory leaks. If pooling is disabled, all memory is
global and there is no clean-up.

If you want persistent memory allocation, add the prefix PERM_ to the name of
each routine (PERM_MALLOC, PERM_REALLOC, PERM_CALLOC, PERM_STRDUP, and
PERM_FREE).

Note: Any memory you allocate from Init-class functions will be allocated as
persistent memory, even if you use MALLOC. The server cleans up only the
memory that is allocated while processing a request, and because Init-class
functions are run before processing any requests, their memory is allocated
globally.

mime-types specifies either the full path name to a MIME types file or a
path name relative to the server configuration directory.
The server comes with a default file called mime.types in
the server’s config directory.

local-types (optional) specifies either the full path name to a MIME
types file or a path name relative to the server configuration
directory. The file can be used to maintain types that are
applicable only to your server.

Init fn=load-types mime-types=mime.types

Init fn=load-types mime-types=mime.types
local-types=/usr/netscape/server4/local.types
 Predefined SAFS for Each Stage in the Request Handling Process 55

Init Stage
Parameters

Example

thread-pool-init

Applicable in Init-class directives.

This function creates a new pool of user threads. To tell a plugin to use the
new pool, specify the pool parameter when loading the plugin with the Init-
class function load-modules.

One reason to create a custom thread pool would be if a plugin is not thread-
aware, in which case you can set the maximum number of threads in the pool
to 1.

Parameters

Example

free-size (optional) maximum size in bytes of free block list. May not
be greater than 1048576.

disable (optional) flag to disable the use of pooled memory.
Should have a value of true or false. Default value is false.

Init fn=pool-init disable=true

name name of the thread pool.

maxthreads maximum number of threads in the pool.

minthreads minimum number of threads in the pool.

queueSize size of the queue for the pool. If all the threads in the pool
are busy, further request-handling threads that want to get
a thread from the pool will wait in the pool queue. The
number of request-handling threads that can wait in the
queue is limited by the queue size. If the queue is full, the
next request-handling thread that comes to the queue is
turned away, with the result that the request is turned
down, but the request-handling thread remains free to
handle another request instead of becoming locked up in
the queue.

Init fn=thread-pool-init name="my-custom-pool"
maxthreads=100 minthreads=1 queuesize=200

Init fn=load-modules shlib="C:/mydir/myplugin.dll"
funcs="tracker" pool="my-custom-pool"
56 NSAPI Programmer’s Guide for Enterprise Server 4.0

AuthTrans Stage
See also load-modules

AuthTrans Stage
AuthTrans stands for Authorization Translation. AuthTrans directives give the
server instructions for checking authorization before allowing a client to access
resources. AuthTrans directives work in conjunction with PathCheck
directives. Generally, an AuthTrans function checks if the username and
password associated with the request are acceptable, but it does not allow or
deny access to the request -- it leaves that to a PathCheck function.

The server handles the authorization of client users in two steps.

• AuthTrans Directive - validates authorization information sent by the client
in the Authorization header.

• PathCheck Stage - checks that the authorized user is allowed access to the
requested resource.

The authorization process is split into two steps so that multiple authorization
schemes can be easily incorporated, as well as providing the flexibility to have
resources that record authorization information but do not require it.

AuthTrans functions get the username and password from the headers
associated with the request. When a client initially makes a request, the
username and password are unknown so the AuthTrans functions and
PathCheck functions work together to reject the request, since they can’t
validate the username and password. When the client receives the rejection, its
usual response is to pop up a dialog box asking for the username and
password to enter the appropriate realm, and then the client submits the
request again, this time including the username and password in the headers.

If there is more than one AuthTrans directive in obj.conf, each function is
executed in order until one succeeds in authorizing the user.

The following AuthTrans-class functions are described in detail in this section:

• basic-auth calls a custom function to verify user name and password.
Optionally determines the user’s group.

• basic-ncsa verifies user name and password against an NCSA-style or
system DBM database. Optionally determines the user’s group.
 Predefined SAFS for Each Stage in the Request Handling Process 57

AuthTrans Stage
• get-sslid retrieves a string that is unique to the current SSL session and
stores it as the ssl-id variable in the Session->client parameter block.

basic-auth

Applicable in AuthTrans-class directives.

The basic-auth function calls a custom function to verify authorization
information sent by the client. The Authorization header is sent as part of the
basic server authorization scheme.

This function is usually used in conjunction with the PathCheck-class function
require-auth.

Parameters
auth-type specifies the type of authorization to be used. This should

always be "basic".

userdb (optional) specifies the full path and file name of the user
database to be used for user verification. This parameter
will be passed to the user function.

userfn is the name of the user custom function to verify
authorization. This function must have been previously
loaded with load-modules. It has the same interface as
all the SAFs, but it is called with the user name (user),
password (pw), user database (userdb), and group
database (groupdb) if supplied, in the pb parameter. The
user function should check the name and password using
the database and return REQ_NOACTION if they are not
valid. It should return REQ_PROCEED if the name and
password are valid. The basic-auth function will then add
auth-type, auth-user (user), auth-db (userdb),
and auth-password (pw, Windows NT only) to the rq-
>vars pblock.

groupdb (optional) specifies the full path and file name of the user
database. This parameter will be passed to the group
function.
58 NSAPI Programmer’s Guide for Enterprise Server 4.0

AuthTrans Stage
Examples

See Also require-auth

basic-ncsa

Applicable in AuthTrans-class directives.

The basic-ncsa function verifies authorization information sent by the client
against a database. The Authorization header is sent as part of the basic server
authorization scheme.

This function is usually used in conjunction with the PathCheck-class function
require-auth.

Parameters

groupfn (optional) is the name of the group custom function that
must have been previously loaded with load-modules. It
has the same interface as all the SAFs, but it is called with
the user name (user), password (pw), user database
(userdb), and group database (groupdb) in the pb
parameter. It also has access to the auth-type, auth-
user (user), auth-db (userdb), and auth-password
(pw, Windows NT only) parameters in the rq->vars
pblock. The group function should determine the user’s
group using the group database, add it to rq->vars as
auth-group, and return REQ_PROCEED if found. It
should return REQ_NOACTION if the user’s group is not
found.

Init fn=load-modules shlib=/path/to/mycustomauth.so
funcs=hardcoded_auth

AuthTrans fn=basic-auth auth-type=basic
userfn=hardcoded_auth

PathCheck fn=require-auth auth-type=basic realm="Marketing
Plans"

auth-type specifies the type of authorization to be used. This should
always be "basic".
 Predefined SAFS for Each Stage in the Request Handling Process 59

AuthTrans Stage
Examples

See Also require-auth

get-sslid

Applicable in AuthTrans-class directives.

The get-sslid function retrieves a string that is unique to the current SSL
session, and stores it as the ssl-id variable in the Session->client
parameter block.

If the variable ssl-id is present when a CGI is invoked, it is passed to the CGI
as the HTTPS_SESSIONID environment variable.

The get-sslid function has no parameters and always returns REQ_NOACTION.
It has no effect if SSL is not enabled.

dbm (optional) specifies the full path and base file name of the
user database in the server’s native format. The native
format is a system DBM file, which is a hashed file format
allowing instantaneous access to billions of users. If you
use this parameter, don’t use the userfile parameter as
well.

userfile (optional) specifies the full path name of the user database
in the NCSA-style HTTPD user file format. This format
consists of lines using the format name:password, where
password is encrypted. If you use this parameter, don’t
use dbm.

grpfile (optional) specifies the NCSA-style HTTPD group file to be
used. Each line of a group file consists of group:user1
user2 ... userN where each user is separated by spaces.

AuthTrans fn=basic-ncsa auth-type=basic
dbm=/netscape/server4/userdb/rs
PathCheck fn=require-auth auth-type=basic
realm="Marketing Plans"

AuthTrans fn=basic-ncsa auth-type=basic
userfile=/netscape/server4/.htpasswd
grpfile=/netscape/server4/.grpfile
PathCheck fn=require-auth auth-type=basic
realm="Marketing Plans"
60 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Stage
Note: Enterprise Server 4.x incorporates the functionality of get-sslid into the
standard processing of an SSL connection, so there should no longer be a need
to use get-sslid as of Enterprise Server 4.0.

Parameters

NameTrans Stage
NameTrans stands for Name Translation. NameTrans directives translate virtual
URLs to physical directories on your server. For example, the URL

http://www.test.com/some/file.html

could be translated to the full file-system path

/usr/netscape/server4/docs/some/file.html

NameTrans directives should appear in the default object. If there is more than
one NameTrans directive in an object, the server executes each one in order
until one succeeds.

The following NameTrans-class functions are described in detail in this section:

• assign-name tells the server to process directives in a named object.

• document-root translates a URL into a file system path by replacing the
http://server-name/ part of the requested resource with the document
root directory.

• home-page translates a request for the server’s root home page (/) to a
specific file.

• pfx2dir translates any URL beginning with a given prefix to a file system
directory and optionally enables directives in an additional named object .

• redirect redirects the client to a different URL.

• unix-home translates a URL to a specified directory within a user’s home
directory.

assign-name

Applicable in NameTrans-class directives.

none
 Predefined SAFS for Each Stage in the Request Handling Process 61

NameTrans Stage
The assign-name function specifies the name of an object in obj.conf that
matches the current request. The server then processes the directives in the
named object in preference to the ones in the default object.

For example, consider the following directive in the default object:

NameTrans fn=assign-name name=personnel from=/personnel

Let’s suppose the server receives a request for http://server-name/
personnel. After processing this NameTrans directive, the server looks for an
object named personnel in obj.conf, and continues by processing the
directives in the personnel object.

The assign-name function always returns REQ_NOACTION,

Parameters

Example

document-root

Applicable in NameTrans-class directives.

The document-root function specifies the root document directory for the
server. If the physical path has not been set by a previous NameTrans function,
the http://server-name/ part of the path is replace by the physical
pathname for the document root.

When the server receives a request for http://server-name/somepath/
somefile, the document-root function replaces http://server-name/ with
the value of its root parameter. For example, if the document root directory is
/usr/netscape/server4/docs , then when the server receives a request for

from is a wildcard pattern that specifies the path to be affected.

name specifies an additional named object in obj.conf whose
directives will be applied to this request.

This NameTrans directive is in the default object.
NameTrans fn=assign-name
name=personnel from=/a/b/c/pers

...
<Object name=personnel>
...additional directives..
</Object>
62 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Stage
http://server-name/a/b/file.html, the document-root function
translates the pathname for the requested resource to /usr/netscape/
server4/docs/a/b/file.html.

This function always returns REQ_PROCEED. NameTrans directives listed after
this will never be called, so be sure that the directive that invokes document-
root is the last NameTrans directive.

There can be only one root document directory. To specify additional
document directories, use the pfx2dir function to set up additional path name
translations.

Parameters

Examples

See also pfx2dir

home-page

Applicable in NameTrans-class directives.

The home-page function specifies the home page for your server. Whenever a
client requests the server’s home page (/), they’ll get the document specified.

Parameters

Examples

root is the file system path to the server’s root document
directory.

NameTrans fn=document-root root=/usr/netscape/server4/docs

path is the path and name of the home page file. If path starts
with a slash (/), it is assumed to be a full path to a file.

This function sets the server’s path variable and returns
REQ_PROCEED. If path does not start with a slash (/), it is
appended to the URI and the function returns
REQ_NOACTION continuing on to the other NameTrans
directives.

NameTrans fn="home-page" path="homepage.html"

NameTrans fn="home-page" path="/httpd/docs/home.html"
 Predefined SAFS for Each Stage in the Request Handling Process 63

NameTrans Stage
pfx2dir

Applicable in NameTrans-class directives.

The pfx2dir function replaces a directory prefix in the requested URL with a
real directory name. It also optionally allows you to specify the name of an
object that matches the current request. (See the discussion of assign-name for
details of using named objects)

Parameters

Examples In the first example, the URL http://server-name/cgi-bin/resource
(such as http://x.y.z/cgi-bin/test.cgi) is translated to the physical
pathname /httpd/cgi-local/resource, (such as /httpd/cgi-local/
test.cgi) and the server also starts processing the directives in the object
named cgi.

In the second example, the URL http://server-name/icons/resource
(such as http://x.y.z/icons/happy/smiley.gif) is translated to the
physical pathname /users/nikki/images/resource, (such as /users/
nikki/images/smiley.gif)

redirect

Applicable in NameTrans-class directives.

from is the URI prefix to convert. It should not have a trailing
slash (/).

dir is the local file system directory path that the prefix is
converted to. It should not have a trailing slash (/).

name (optional) specifies an additional named object in
obj.conf whose directives will be applied to this request.

NameTrans fn=pfx2dir from=/cgi-bin dir=/httpd/cgi-local
name=cgi

NameTrans fn=pfx2dir from=/icons/happy
dir=/users/nikki/images
64 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Stage
The redirect function lets you change URLs and send the updated URL to the
client. When a client accesses your server with an old path, the server treats the
request as a request for the new URL.

Parameters

Examples

In the first example, any request for http://server-name/whatever is
translated to a request for http://tmpserver/whatever.

In the second example, any request for http://server-name/
toopopular/whatever is translated to a request for http://bigger/
better/stronger/morepopular/whatever.

unix-home

Applicable in NameTrans-class directives.

Unix Only. The unix-home function translates user names (typically of the
form ~username) into the user’s home directory on the server’s Unix machine.
You specify a URL prefix that signals user directories. Any request that begins
with the prefix is translated to the user’s home directory.

from specifies the prefix of the requested URI to match.

url (maybe optional) specifies a complete URL to return to the
client. If you use this parameter, don’t use url-prefix
(and vice-versa).

url-prefix (maybe optional) is the new URL prefix to return to the
client. The from prefix is simply replaced by this URL
prefix. If you use this parameter, don’t use url (and vice-
versa).

escape (optional) is a flag which tells the server to
util_uri_escape() the URL before sending it. It
should be yes or no. The default is yes.

NameTrans fn=redirect from=/ url-prefix=http://tmpserver

NameTrans fn=redirect from=/toopopular
url=http://bigger/better/stronger/morepopular
 Predefined SAFS for Each Stage in the Request Handling Process 65

PathCheck Stage
You specify the list of users with either the /etc/passwd file or a file with a
similar structure. Each line in the file should have this structure (elements in the
passwd file that are not needed are indicated with *):

username:*:*:groupid:*:homedir:*

If you want the server to scan the password file only once at startup, use the
Init-class function init-uhome.

Parameters

Examples

See Also init-uhome, find-links

PathCheck Stage
PathCheck directives check the local file system path that is returned after the
NameTrans step. The path is checked for things such as CGI path information
and for dangerous elements such as /./and /../ and //, and then any access
restriction is applied.

If there is more than one PathCheck directive, each of the functions are
executed in order.

The following PathCheck-class functions are described in detail in this section:

• cert2user determines the authorized user from the client certificate.

• check-acl checks an access control list for authorization.

• deny-existence indicates that a resource was not found.

from is the URL prefix to translate, usually "/~".

subdir is the subdirectory within the user’s home directory that
contains their web documents.

pwfile (optional) is the full path and file name of the password file
if it is different from /etc/passwd.

name (optional) specifies an additional named object whose
directives will be applied to this request.

NameTrans fn=unix-home from=/~ subdir=public_html

NameTrans fn=unix-home from /~ pwfile=/mydir/passwd
subdir=public_html
66 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
• find-index locates a default file when a directory is requested.

• find-links denies access to directories with certain file system links

• find-pathinfo locates extra path info beyond the file name for the
PATH_INFO CGI environment variable.

• get-client-cert gets the authenticated client certificate from the SSL3
session.

• load-config finds and loads extra configuration information from a file in
the requested path

• nt-uri-clean denies access to requests with unsafe path names by
indicating not found.

• ntcgicheck looks for a CGI file with a specified extension.

• require-auth denies access to unauthorized users or groups.

• ssl-check checks the secret keysize.
• ssl-logout invalidates the current SSL session in the server’s SSL session

cache.

• unix-uri-clean denies access to requests with unsafe path names by
indicating not found.

cert2user

Applicable in PathCheck-class directives.

The cert2user function maps the authenticated client certificate from the SSL3
session to a user name, using the certificate-to-user mappings in the user
database specified by userdb.

Parameters
userdb names the user database from which to obtain the

certificate.
 Predefined SAFS for Each Stage in the Request Handling Process 67

PathCheck Stage
Examples

check-acl

Applicable in PathCheck-class directives.

The check-acl function specifies an Access Control List (ACL) to use to check
whether the client is allowed to access the requested resource. An access
control list contains information about who is or is not allowed to access a
resource, and under what conditions access is allowed.

makefrombasic tells the function to establish a certificate-to-user mapping.
If makefrombasic is present and is not 0, the directive
uses basic password authentication to authenticate the user
and to then create a new certificate-to-user mapping in the
specified user database if no such mapping has already
been created there.

The server allows the certificate-to-user mapping to be
created automatically by:

• Obtaining and verifying a certificate from the user

• Obtaining a user name and password using WWW basic
authentication.

• Creating a mapping from that certificate to that user
(provided both check out ok).

require governs the return value. If the certificate cannot be
mapped successfully to a user name, and the value of
require is 0, the function returns REQ_NOACTION
allowing the processing of the request to continue. But if
the value of require is not 0, the function returns
REQ_ABORTED and sets the protocol status to 403
FORBIDDEN, causing the request to fail and the client to
be given the FORBIDDEN status. The default value of
require is 1.

method specifies a wildcard pattern for the HTTP methods for
which this function will be applied. If method is absent,
the function is applied for any method.

Map the client cert to a user using this userdb.
If a mapping is not present, the request fails.
PathCheck fn="cert2user"
userdb="/usr/netscape/server4/authdb/default"
require="1"
68 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
Regardless of the order of PathCheck directives in the object, check-acl
functions are executed first. They cause user authentication to be performed, if
required by the specified ACL, and will also update the access control state.

Parameters

Examples

deny-existence

Applicable in PathCheck-class directives.

The deny-existence function sends a “not found” message when a client tries
to access a specified path. The server sends “not found” instead of “forbidden,”
so the user cannot tell whether the path exists or not.

Use this function inside a <Client> block to deny the existence of a resource
to specific users. For example, these lines deny existence of all resources to any
user not in the personal.com domain:

<Client dns=*~.personal.com>

PathCheck fn=deny-existence

</Client>

Parameters

Examples

acl is the name of an Access Control List.

shexp (optional) is a wildcard pattern that specifies the path for
which to apply the ACL.

bong-file (optional) is the path name for a file that will be sent if this
ACL denies access.

PathCheck fn=check-acl acl="*HRonly*"

path (optional) is a wildcard pattern of the file-system path to
hide. If the path does not match, the function does nothing
and returns REQ_NOACTION. If the path is not provided, it
is assumed to match.

bong-msg (optional) specifies a file to send rather than responding
with the "not found" message. It is a full file-system path.

PathCheck fn=deny-existence path=/usr/netscape/server4/docs/
private
 Predefined SAFS for Each Stage in the Request Handling Process 69

PathCheck Stage
find-index

Applicable in PathCheck-class directives.

The find-index function investigates whether the requested path is a
directory. If it is, the function searches for an index file in the directory, and
then changes the path to point to the index file. If no index file is found, the
server generates a directory listing.

Note that if the file obj.conf has a NameTrans directive that calls home-page,
and the requested directory is the root directory, then the home page rather
than the index page, is returned to the client.

The find-index function does nothing if there is a query string, if the HTTP
method is not GET, or if the path is that of a valid file.

Parameters

Examples

find-links

Applicable in PathCheck-class directives.

Unix Only. The find-links function searches the current path for symbolic
or hard links to other directories or file systems. If any are found, an error is
returned. This function is normally used for directories that are not trusted
(such as user home directories). It prevents someone from pointing to
information that should not be made public.

PathCheck fn=deny-existence bong-msg=/svr/msg/go-away.html

index-names is a comma-separated list of index file names to look for.
Use spaces only if they are part of a file name. Do not
include spaces before or after the commas. This list is case-
sensitive if the file system is case-sensitive.

PathCheck fn=find-index index-names=index.html,home.html
70 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
Parameters

Examples

See Also init-uhome, unix-home

find-pathinfo

Applicable in PathCheck-class directives.

The find-pathinfo function finds any extra path information after the file
name in the URL and stores it for use in the CGI environment variable
PATH_INFO.

Parameters

Examples

get-client-cert

Applicable in PathCheck-class directives.

disable is a character string of links to disable:

• h is hard links

• s is soft links

• o allows symbolic links from user home directories only
if the user owns the target of the link.

dir is the directory to begin checking. If you specify an
absolute path, any request to that path and its
subdirectories is checked for symbolic links. If you specify
a partial path, any request containing that partial path is
checked for symbolic links. For example, if you use /
user/ and a request comes in for some/user/
directory, then that directory is checked for symbolic
links.

PathCheck fn=find-links disable=sh dir=/foreign-dir

PathCheck fn=find-links disable=so dir=public_html

None.

PathCheck fn=find-pathinfo
 Predefined SAFS for Each Stage in the Request Handling Process 71

PathCheck Stage
The get-client-cert function gets the authenticated client certificate from
the SSL3 session. It can apply to all HTTP methods, or only to those that match
a specified pattern. It only works when SSL is enabled on the server.

If the certificate is present or obtained from the SSL3 session, the function
returns REQ_NOACTION, allowing the request to proceed, otherwise it returns
REQ_ABORTED and sets the protocol status to 403 FORBIDDEN, causing the
request to fail and the client to be given the FORBIDDEN status.

Parameters
dorequest controls whether to actually try to get the certificate, or just

test for its presence. If dorequest is absent the default
value is 0.

• 1 tells the function to redo the SSL3 handshake to get a
client certificate, if the server does not already have the
client certificate. This typically causes the client to
present a dialog box to the user to select a client
certificate. The server may already have the client
certificate if it was requested on the initial handshake,
or if a cached SSL session has been resumed.

• 0 tells the function not to redo the SSL3 handshake if
the server does not already have the client certificate.

If a certificate is obtained from the client and verified
successfully by the server, the ASCII base64 encoding of
the DER-encoded X.509 certificate is placed in the
parameter auth-cert in the Request->vars pblock,
and the function returns REQ_PROCEED, allowing the
request to proceed.

require controls whether failure to get a client certificate will abort
the HTTP request. If require is absent the default value
is 1.

• 1 tells the function to abort the HTTP request if the
client certificate is not present after dorequest is
handled. In this case, the HTTP status is set to
PROTOCOL_FORBIDDEN, and the function returns
REQ_ABORTED.

• 0 tells the function to return REQ_NOACTION if the
client certificate is not present after dorequest is
handled.

method (optional) specifies a wildcard pattern for the HTTP
methods for which the function will be applied. If method
is absent, the function is applied to all requests.
72 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
Examples

load-config

Applicable in PathCheck-class directives.

The load-config function searches for configuration files in document
directories and adds the file’s contents to the server’s existing configuration.
These configuration files (also known as dynamic configuration files) specify
additional access control information for the requested resource. Depending on
the rules in the dynamic configuration files, the server might or might not allow
the client to access the requested resource.

Each directive that invokes load-config is associated with a base directory,
which is either stated explicitly through the basedir parameter or derived from
the root directory for the requested resource. The base directory determines
two things:

• the top-most directory for which requests will invoke this call to the load-
config function.

For example, if the base directory is D:/Netscape/Server4/docs/nikki/
, then only requests for resources in this directory or its subdirectories (and
their subdirectories and so on) trigger the search for dynamic configuration
files. A request for the resource D:/Netscape/Server4/docs/
somefile.html does not trigger the search in this case, since the requested
resource is in a parent directory of the base directory.

• the top-most directory in which the server looks for dynamic configuration
files to apply to the requested resource.

If the base directory is D:/Netscape/Server4/docs/nikki/, the server
starts its search for dynamic configuration files in this directory. It may or
may not also search subdirectories (but never parent directories) depending
on other factors.

Get the client certificate from the session.
If a certificate is not already associated with the
session, request one.
The request fails if the client does not present a
valid certificate.

PathCheck fn="get-client-cert" dorequest="1"
 Predefined SAFS for Each Stage in the Request Handling Process 73

PathCheck Stage
When you enable dynamic configuration files through the Server Manager
interface, the system writes additional objects with ppath parameters into the
obj.conf file. If you manually add directives that invoke load-config to the
default object (rather than putting them in separate objects), the Server Manager
interface might not reflect your changes.

If you manually add PathCheck directives that invoke load-config to the file
obj.conf, put them in additional objects (created with the <OBJECT> tag)
rather than putting them in the default object. Use the ppath attribute of the
OBJECT tag to specify the partial pathname for the resources to be affected by
the access rules in the dynamic configuration file. The partial pathname can be
any pathname that matches a pattern, which can include wildcard characters.

For example, the following <OBJECT> tag specifies that requests for resources
in the directory D:/Netscape/Server4/docs are subject to the access rules in
the file my.nsconfig.

<Object ppath="D:/Netscape/Server4/docs/*">
PathCheck fn="load-config" file="my.nsconfig" descend=1
basedir="D:/Netscape/Server4/docs"
</Object>

Note: If the ppath resolves to a resource or directory that is higher in the
directory tree (or is in a different branch of the tree) than the base directory, the
load-config function is not invoked. This is because the base directory
specifies the highest-level directory for which requests will invoke the load-
config function.

The load-config function returns REQ_PROCEED if configuration files were
loaded, REQ_ABORTED on error, or REQ_NOACTION when no files are loaded.

Parameters
file (optional) is the name of the dynamic configuration file

containing the access rules to be applied to the requested
resource. If not provided, the file name is assumed to be
".nsconfig".

disable-types (optional) specifies a wildcard pattern of types to disable
for the base directory, such as "magnus-internal/cgi".
Requests for resources matching these types are aborted.
74 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
Examples In this example, whenever the server receives a request for any resource
containing the substring "secret" that resides in D:/Netscape/Server4/
docs/nikki/ or a subdirectory thereof, it searches for a configuration file
called checkaccess.nsconfig.

The server starts the search in the directory D:/Netscape/Server4/docs/
nikki, and searches subdirectories too. It loads each instance of
checkaccess.nsconfig that it finds, applying the access control rules
contained therein to determine whether the client is allowed to access the
requested resource or not.

nt-uri-clean

Applicable in PathCheck-class directives.

Windows NT Only. The nt-uri-clean function denies access to any resource
whose physical path contains \.\, \..\ or \\ (these are potential security
problems).

descend (optional) if present, specifies that the server should search
in subdirectories of this directory for dynamic configuration
files. For example, descend=1 specifies that the server
should search subdirectories. No descend parameter
specifies that the function should search only the base
directory.

basedir (optional) specifies base directory. This is the highest-level
directory for which requests will invoke the load-config
function and is also the directory where the server starts
searching for configuration files.

If basedir is not specified, the base directory is assumed
to be the root directory that results from translating the
requested resource’s URL to a physical pathname. For
example, if the request was for http://server-name/
a/b/file.html, the physical file name would be
/document-root/a/b/file.html..

<Object ppath="*secret*">
PathCheck fn="load-config" file="checkaccess.nsconfig"
basedir="D:/Netscape/Server4/docs/nikki" descend="1"
</Object>
 Predefined SAFS for Each Stage in the Request Handling Process 75

PathCheck Stage
Parameters

Examples

See Also unix-uri-clean

ntcgicheck

Applicable in PathCheck-class directives.

Windows NT Only. The ntcgicheck function specifies the file name
extension to be added to any file name that does not have an extension, or to
be substituted for any file name that has the extension .cgi.

Parameters

Examples

See Also init-cgi, send-cgi, send-wincgi, send-shellcgi

require-auth

Applicable in PathCheck-class directives.

The require-auth function allows access to resources only if the user or
group is authorized. Before this function is called, an authorization function
(such as basic-auth) must be called in an AuthTrans directive.

If a user was authorized in an AuthTrans directive, and the auth-user
parameter is provided, then the user’s name must match the auth-user
wildcard value. Also, if the auth-group parameter is provided, the authorized
user must belong to an authorized group which must match the auth-user
wildcard value.

None.

PathCheck fn=nt-uri-clean

extension is the replacement file extension.

PathCheck fn=ntcgicheck extension=pl
76 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Stage
Parameters

Examples

See Also basic-auth, basic-ncsa

ssl-check

Applicable in PathCheck-class directives. New in Enterprise Server 4.0.

If a restriction is selected that is not consistent with the current cipher settings
under Security Preferences, this function opens a popup dialog which warns
that ciphers with larger secret keysizes need to be enabled. This function is
designed to be used together with a Client tag to limit access of certain
directories to non-exportable browsers.

The function returns REQ_NOACTION if SSL is not enabled, or if the secret-
keysize parameter is not specified. If the secret keysize for the current session
is less than the specified secret-keysize and the bong-file parameter is
not specified, the function returns REQ_ABORTED with a status of
PROTOCOL_FORBIDDEN. If the bong file is specified, the function returns
REQ_PROCEED, and the path variable is set to the bong filename. Also, when a

path (optional) is a wildcard local file system path on which this
function should operate. If no path is provided, the
function applies to all paths.

auth-type is the type of HTTP authorization used and must match the
auth-type from the previous authorization function in
AuthTrans. Currently, basic is the only authorization type
defined.

realm is a string sent to the browser indicating the secure area (or
realm) for which a user name and password are requested.

auth-user (optional) specifies a wildcard list of users who are allowed
access. If this parameter is not provided, then any user
authorized by the authorization function is allowed access.

auth-group (optional) specifies a wildcard list of groups that are
allowed access.

PathCheck fn=require-auth auth-type=basic
realm="Marketing Plans" auth-group=mktg
auth-user=(jdoe|johnd|janed)
 Predefined SAFS for Each Stage in the Request Handling Process 77

PathCheck Stage
keysize restriction is not met, the SSL session cache entry for the current session
is invalidated, so that a full SSL handshake will occur the next time the same
client connects to the server.

Requests that use ssl-check are not cacheable in the accelerator file cache if
ssl-check returns something other than REQ_NOACTION.

This function supersedes the key-toosmall Service-class function that was
used in Enterprise Server prior to release 4.0.

Parameters

ssl-logout

Applicable in PathCheck-class directives.

ssl-logout invalidates the current SSL session in the server’s SSL session
cache. This does not affect the current request, but the next time the client
connects, a new SSL session will be created. If SSL is enabled, this function
returns REQ_PROCEED after invalidating the session cache entry. If SSL is not
enabled, it returns REQ_NOACTION.

Parameters

unix-uri-clean

Applicable in PathCheck-class directives.

Unix Only. The unix-uri-clean function denies access to any resource
whose physical path contains /./, /../ or // (these are potential security
problems).

Parameters

secret-keysize (optional) is the minimum number of bits required in the
secret key.

bong-file (optional) is the name of a file (not a URI) to be served if
the restriction is not met

None.

None.
78 NSAPI Programmer’s Guide for Enterprise Server 4.0

ObjectType Stage
Examples

See Also nt-uri-clean

ObjectType Stage
ObjectType directives determine the MIME type of the file to send to the client
in response to a request. MIME attributes currently sent are type, encoding,
and language. The MIME type sent to the client as the value of the content-
type header.

ObjectType directives also set the type parameter, which is used by Service
directives to determine how to process the request according to what kind of
content is being requested.

If there is more than one ObjectType directive in an object, all the directives
are applied in the order they appear. If a directive sets an attribute and later
directives try to set that attribute to something else, the first setting is used and
the subsequent ones ignored.

The obj.conf file almost always has an ObjectType directive that calls the
type-by-extension function. This function instructs the server to look in a
particular file (the MIME types file) to deduce the content type from the
extension of the requested resource.

The following ObjectType-class functions are described in detail in this
section:

• force-type sets the content-type header for the response to a specific
type.

• shtml-hacktype requests that .htm and .html files are parsed for server-
parsed html commands.

• type-by-exp sets the content-type header for the response based on the
requested path.

• type-by-extension sets the content-type header for the response based
on the files extension and the MIME types database.

PathCheck fn=unix-uri-clean
 Predefined SAFS for Each Stage in the Request Handling Process 79

ObjectType Stage
force-type

Applicable in ObjectType-class directives.

The force-type function assigns a type to requests that do not already have a
MIME type. This is used to specify a default object type.

Make sure that the directive that calls this function comes last in the list of
ObjectType directives so that all other ObjectType directives have a chance to
set the MIME type first. If there is more than one ObjectType directive in an
object, all the directives are applied in the order they appear. If a directive sets
an attribute and later directives try to set that attribute to something else, the
first setting is used and the subsequent ones ignored.

Parameters

Examples

See Also load-types, type-by-extension, type-by-exp

shtml-hacktype

Applicable in ObjectType-class directives.

type (optional) is the type assigned to a matching request (the
"content-type" header).

enc (optional) is the encoding assigned to a matching request
(the "content-encoding" header).

lang (optional) is the language assigned to a matching request
(the "content-language" header).

charset (optional) is the character set for the magnus-charset
parameter in rq->srvhdrs. If the browser sent the
Accept-charset header or its User-agent is mozilla/
1.1 or newer, then append "; charset=<charset>" to
content-type, where <charset> is the value of the
magnus-charset parameter in rq->srvhdrs.

ObjectType fn=force-type type=text/plain

ObjectType fn=force-type lang=en_US
80 NSAPI Programmer’s Guide for Enterprise Server 4.0

ObjectType Stage
The shtml-hacktype function changes the content-type of any .htm or .html
file to "magnus-internal/parsed-html" and returns REQ_PROCEED. This
provides backward compatibility with server-side includes for files with .htm or
.html extensions. The function may also check the execute bit for the file on
Unix systems. The use of this function is not recommended.

Parameters

Examples

type-by-exp

Applicable in ObjectType-class directives.

The type-by-exp function matches the current path with a wildcard
expression. If the two match, the type parameter information is applied to the
file. This is the same as type-by-extension, except you use wildcard patterns
for the files or directories specified in the URLs.

Parameters

exec-hack (Unix only, optional) tells the function to change the
content-type only if the execute bit is enabled. The value of
the parameter is not important. It need only be provided.
You may use exec-hack=true.

ObjectType fn=shtml-hacktype exec-hack=true

exp is the wildcard pattern of paths for which this function is
applied.

type (optional) is the type assigned to a matching request (the
"content-type" header).

enc (optional) is the encoding assigned to a matching request
(the "content-encoding" header).

lang (optional) is the language assigned to a matching request
(the "content-language" header).

charset (optional) is the character set for the magnus-charset
parameter in rq->srvhdrs. If the browser sent the
Accept-charset header or its User-agent is mozilla/
1.1 or newer, then append "; charset=<charset>" to
content-type, where <charset> is the value of the
magnus-charset parameter in rq->srvhdrs.
 Predefined SAFS for Each Stage in the Request Handling Process 81

ObjectType Stage
Examples

See Also load-types, type-by-extension, force-type

type-by-extension

Applicable in ObjectType-class directives.

This function instructs the server to look in a table of MIME type mappings to
find the MIME type of the requested resource according to the extension of the
requested resource. The MIME type is added to the content-type header sent
back to the client.

The table of MIME type mappings is created during the server’s Init stage by
the load-types function, which loads a MIME types file and creates the
mappings. The MIME types file is usually called mime.types, but you can
specify a different file by providing a different file name to load-types.

For example, the following two lines are part of the MIME types file:

type=text/html exts=htm,html
type=text/plain exts=txt

If the extension of the requested resource is htm or html, the type-by-
extension file sets the type to text/html. If the extension is txt, the function
sets the type to text/plain.

For more information about MIME types, see Appendix C, “MIME Types.”.

Parameters

Examples

See Also load-types, type-by-exp, force-type

ObjectType fn=type-by-exp exp=*.test type=application/html

None.

ObjectType fn=type-by-extension
82 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
Service Stage
The Service class of functions sends the response data to the client.

Every Service directive has the following optional parameters to determine
whether the function is executed. All the optional parameters must match the
current request for the function to be executed.

• type

(optional) specifies a wildcard pattern of MIME types for which this
function will be executed. The "magnus-internal/*" MIME types are used
only to select a Service-class function to execute.

• method

(optional) specifies a wildcard pattern of HTTP methods for which this
function will be executed. Common HTTP methods are GET, HEAD, and
POST.

• query

(optional) specifies a wildcard pattern of query strings for which this
function will be executed.

If there is more than one Service-class function, the first one matching the
optional parameters above is executed.

By default, the server sends the requested file to the client by calling the send-
file function. The directive that sets the default is:

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

This directive usually comes last in the set of Service-class directives to give
all other Service directives a chance to be invoked. This directive is invoked if
the method of the request is GET, HEAD, or POST, and the type does not start
with magnus-internal/. Note here that the pattern *~ means "does not
match." For a list of characters that can be used in patterns, see Appendix D,
“Wildcard Patterns.”.

The following Service-class functions are described in detail in this section:

• add-footer appends a footer specified by a filename or URL to a an HTML
file.

• add-header prepends a header specified by a filename or URL to an HTML
file.

• append-trailer appends text to the end of an HTML file.
 Predefined SAFS for Each Stage in the Request Handling Process 83

Service Stage
• imagemap handles server-side image maps.

• index-common generates a fancy list of the files and directories in a
requested directory.

• index-simple generates a simple list of files and directories in a requested
directory.

• key-toosmall indicates to the client that the provided certificate key size is
too small to accept.

• list-dir lists the contents of a directory.

• make-dir creates a directory.

• parse-html parses an HTML file for server-parsed html commands.

• query-handler handles the HTML ISINDEX tag.

• remove-dir deletes an empty directory.

• remove-file deletes a file.

• rename-file renames a file.

• send-cgi sets up environment variables, launches a CGI program, and
sends the response to the client.

• send-file sends a local file to the client.

• send-range sends a range of bytes of a file to the client.

• send-shellcgi sets up environment variables, launches a shell CGI
program, and sends the response to the client.

• send-wincgi sets up environment variables, launches a WinCGI program,
and sends the response to the client.

• upload-file uploads and saves a file.

add-footer

Applicable in Service-class directives. New in Enterprise Server 4.0.

This function appends a footer to an HTML file that is sent to the client. The
footer is specified either as a filename or a URI -- thus the footer can be
dynamically generated. To specify static text as a footer, use the append-
trailer function.

Parameters
file (optional) The pathname to the file containing the footer.

Specify either file or uri.

By default the pathname is relative. If the pathname is
absolute, pass the NSIntAbsFilePath parameter as
"yes".
84 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
Examples

See Also append-trailer, add-header

add-header

Applicable in Service-class directives. New in Enterprise Server 4.0.

This function prepends a header to an HTML file that is sent to the client. The
header is specified either as a filename or a URI -- thus the header can be
dynamically generated.

Parameters

uri (optional) A URI pointing to the resource containing the
footer. Specify either file or uri.

NSIntAbsFilePath (optional) if the file parameter is specified, the
NSIntAbsFilePath parameter determines whether the
file name is absolute or relative. The default is relative. Set
the value to "yes" to indicate an absolute file path.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type=text/html method=GET fn=add-footer
file="footers/footer1.html"

Service type=text/html method=GET fn=add-footer
file="D:/netscape/server4/footers/footer1.html"
NSIntAbsFilePath="yes"

file (optional) The pathname to the file containing the header.
Specify either file or uri.

By default the pathname is relative. If the pathname is
absolute, pass the NSIntAbsFilePath parameter as
"yes".

uri (optional) A URI pointing to the resource containing the
header. Specify either file or uri.

NSIntAbsFilePath (optional) if the file parameter is specified, the
NSIntAbsFilePath parameter determines whether the
file name is absolute or relative. The default is relative. Set
the value to "yes" to indicate an absolute file path.

type optional parameter common to all Service-class functions
 Predefined SAFS for Each Stage in the Request Handling Process 85

Service Stage
Examples

See Also add-footer, append-trailer

append-trailer

Applicable in Service-class directives.

The append-trailer function sends an HTML file and appends text to the
end. It only appends text to HTML files. This is typically used for author
information and copyright text. The date the file was last modified can be
inserted.

Returns REQ_ABORTED if a required parameter is missing, if there is extra path
information after the file name in the URL, or if the file cannot be opened for
read-only access.

Parameters

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type=text/html method=GET fn=add-header
file="headers/header1.html"

Service type=text/html method=GET fn=add-footer
file="D:/netscape/server4/headers/header1.html"
NSIntAbsFilePath="yes"

trailer is the text to append to HTML documents. The string
:LASTMOD: is replaced by the date the file was last
modified; you must also specify a time format with
timefmt. The string is unescaped with
util_uri_unescape before being sent. The text can
contain HTML tags and can be up to 512 characters long
after unescaping and inserting the date.

timefmt (optional) is a time format string for :LASTMOD:. For
details about time formats refer to Appendix E, “Time
Formats.” If timefmt is not provided, :LASTMOD: will
not be replaced with the time.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions
86 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
Examples

See Also add-footer, add-header

imagemap

Applicable in Service-class directives.

The imagemap function responds to requests for imagemaps. Imagemaps are
images which are divided into multiple areas that each have an associated URL.
The information about which URL is associated with which area is stored in a
mapping file.

Parameters

Examples

index-common

Applicable in Service-class directives.

The index-common function generates a fancy (or common) list of files in the
requested directory. The list is sorted alphabetically. Files beginning with a
period (.) are not displayed. Each item appears as an HTML link. This function
displays more information than index-simple including the size, date last
modified, and an icon for each file. It may also include a header and/or readme
file into the listing.

The Init-class function cindex-init specifies the format for the index list,
including where to look for the images.

Service type=text/html method=GET fn=append-trailer
trailer="<hr> Copyright 1999"

Add a trailer with the date in the format: MM/DD/YY
Service type=text/html method=GET fn=append-trailer
timefmt="%D" trailer="<HR>File last updated on: :LASTMOD:"

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type=magnus-internal/imagemap method=(GET|HEAD)
fn=imagemap
 Predefined SAFS for Each Stage in the Request Handling Process 87

Service Stage
If obj.conf contains a call to index-common in the Service stage, it must
initialize fancy (or common) indexing by invoking cindex-init during the
Init stage.

Indexing occurs when the requested resource is a directory that does not
contain an index file or a home page, or no index file or home page has been
specified by the functions find-index or home-page.

The icons displayed are .gif files dependent on the content-type of the file:

Parameters

"text/*" text.gif

"image/*" image.gif

"audio/*" sound.gif

"video/*" movie.gif

"application/octet-
stream"

binary.gif

directory menu.gif

all others unknown.gif

header (optional) is the path (relative to the directory being
indexed) and name of a file (HTML or plain text) which is
included at the beginning of the directory listing to
introduce the contents of the directory. The file is first tried
with .html added to the end. If found, it is incorporated
near the top of the directory list as HTML. If the file is not
found, then it is tried without the .html and incorporated
as preformatted plain text (bracketed by <PRE> and).

readme (optional) is the path (relative to the directory being
indexed) and name of a file (HTML or plain text) to append
to the directory listing. This file might give more
information about the contents of the directory, indicate
copyrights, authors, or other information. The file is first
tried with ".html" added to the end. If found, it is
incorporated at the bottom of the directory list as HTML. If
the file is not found, then it is tried without the ".html" and
incorporated as preformatted plain text (enclosed by
<PRE> and </PRE>).

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions
88 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
Examples

See Also cindex-init, index-simple, find-index, home-page

index-simple

Applicable in Service-class directives.

The index-simple function generates a simple index of the files in the
requested directory. It scans a directory and returns an HTML page to the
browser displaying a bulleted list of the files and directories in the directory.
The list is sorted alphabetically. Files beginning with a period (.) are not
displayed. Each item appears as an HTML link.

Indexing occurs when the requested resource is a directory that does not
contain either an index file or a home page, or no index file or home page has
been specified by the functions find-index or home-page.

Parameters

Examples

See Also cindex-init, index-common

key-toosmall

Applicable in Service-class directives. This function is deprecated in Enterprise
Server 4.0. It is replaced by the PathCheck-class SAF ssl-check.

query optional parameter common to all Service-class functions

Service fn=index-common type=magnus-internal/directory
method=(GET|HEAD) header=hdr readme=rdme.txt

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type=magnus-internal/directory fn=index-simple
 Predefined SAFS for Each Stage in the Request Handling Process 89

Service Stage
The key-toosmall function returns a message to the client specifying that the
secret key size for SSL communications is too small. This function is designed to
be used together with a Client tag to limit access of certain directories to non-
exportable browsers.

Parameters

Examples

list-dir

Applicable in Service-class directives.

The list-dir function returns a sequence of text lines to the client in
response to a request whose method is INDEX. The format of the returned lines
is:

name type size mimetype

The name field is the name of the file or directory. It is relative to the directory
being indexed. It is URL-encoded, that is, any character might be represented
by %xx, where xx is the hexadecimal representation of the character’s ASCII
number.

The type field is a MIME type such as text/html. Directories will be of type
directory. A file for which the server doesn’t have a type will be of type
unknown.

The size field is the size of the file, in bytes.

The mtime field is the numerical representation of the date of last modification
of the file. The number is the number of seconds since the epoch (Jan 1, 1970
00:00 UTC) since the last modification of the file.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

<Object ppath=/mydocs/secret/*>
<Client secret-keysize=40)
Service fn=key-toosmall
</Client>
</Object>
90 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that calls list-dir for requests whose
method is INDEX.

Parameters

Examples

make-dir

Applicable in Service-class directives.

The make-dir function creates a directory when the client sends a request
whose method is MKDIR. The function can fail if the server can’t write to that
directory.

When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that invokes make-dir when the request
method is MKDIR.

Parameters

Examples

parse-html

Applicable in Service-class directives.

The parse-html function parses an HTML document, scanning for embedded
commands. These commands may provide information from the server, include
the contents of other files, or execute a CGI program. Refer to Appendix F,
“Server-Parsed HTML Tags,” for server-parsed HTML commands.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=list-dir method="INDEX"

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn="make-dir" method="MKDIR"
 Predefined SAFS for Each Stage in the Request Handling Process 91

Service Stage
Parameters

Examples

query-handler

Applicable in Service-class directives.

The query-handler function runs a CGI program instead of referencing the
path requested. This is used mainly to support the obsolete ISINDEX tag . If
possible, use an HTML form instead.

Parameters

Examples

remove-dir

Applicable in Service-class directives.

The remove-dir function removes a directory when the client sends an
request whose method is RMDIR. The directory must be empty (have no files in
it). The function will fail if the directory is not empty or if the server doesn’t
have the privileges to remove the directory.

opts (optional) are parsing options. The no-exec option is the
only currently available option—it disables the exec
command.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type=magnus-internal/parsed-html method=(GET|HEAD)
fn=parse-html

path is the full path and file name of the CGI program to run.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service query=* fn=query-handler path=/http/cgi/do-grep

Service query=* fn=query-handler path=/http/cgi/proc-info
92 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that invokes remove-dir when the request
method is RMDIR.

Parameters

Examples

remove-file

Applicable in Service-class directives.

The remove-file function deletes a file when the client sends a request whose
method is DELETE. It deletes the file indicated by the URL if the user is
authorized and the server has the needed file system privileges.

When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that invokes remove-file when the request
method is DELETE.

Parameters

Examples

rename-file

Applicable in Service-class directives.

The rename-file function renames a file when the client sends a request with
a New-URL header whose method is MOVE . It renames the file indicated by the
URL to New-URL within the same directory if the user is authorized and the
server has the needed file system privileges.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn="remove-dir" method="RMDIR"

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn="remove-file" method="DELETE"
 Predefined SAFS for Each Stage in the Request Handling Process 93

Service Stage
When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that invokes rename-file when the request
method is MOVE.

Parameters

Examples

send-cgi

Applicable in Service-class directives.

The send-cgi function sets up the CGI environment variables, runs a file as a
CGI program in a new process, and sends the results to the client.

For details about the CGI environment variables and their NSAPI equivalents
refer to section "CGI to NSAPI Conversion" in Chapter 4, “Creating Custom
SAFs”.

Parameters

Examples

send-file

Applicable in Service-class directives.

The send-file function sends the contents of the requested file to the client. It
provides the content-type, content-length, and last-modified headers.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn="rename-file" method="MOVE"

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=send-cgi

Service type=magnus-internal/cgi fn=send-cgi
94 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Stage
Most requests are handled by this function using the following directive (which
usually comes last in the list of Service-class directives in the default object so
that it acts as a default)

Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"

This directive is invoked if the method of the request is GET, HEAD, or POST, and
the type does not start with magnus-internal/. Note here that the pattern *~
means "does not match." For a list of characters that can be used in patterns,
see Appendix D, “Wildcard Patterns.”.

Parameters

Examples

send-range

Applicable in Service-class directives.

When the client requests a portion of a document, by specifying HTTP byte
ranges, the send-range function returns that portion.

Parameters

Examples

send-shellcgi

Applicable in Service-class directives.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service type="*~magnus-internal/*" method="(GET|HEAD)"
fn="send-file"

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=send-range
 Predefined SAFS for Each Stage in the Request Handling Process 95

Service Stage
Windows NT only. The send-shellcgi function runs a file as a shell CGI
program and sends the results to the client. Shell CGI is a server configuration
that lets you run CGI applications using the file associations set in Windows
NT. For information about shell CGI programs, consult the Administrator’s
Guide to Enterprise Server 4.0.

Parameters

Examples

send-wincgi

Applicable in Service-class directives.

Windows NT only. The send-wincgi function runs a file as a Windows CGI
program and sends the results to the client. For information about Windows
CGI programs, consult the Administrator’s Guide to Enterprise Server 4.0.

Parameters

Examples

upload-file

Applicable in Service-class directives.

The upload-file function uploads and saves a new file when the client sends
a request whose method is PUT if the user is authorized and the server has the
needed file system privileges.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=send-shellcgi

Service type=magnus-internal/cgi fn=send-shellcgi

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=send-wincgi

Service type=magnus-internal/cgi fn=send-wincgi
96 NSAPI Programmer’s Guide for Enterprise Server 4.0

AddLog Stage
When remote file manipulation is enabled in the server, the obj.conf file
contains a Service-class function that invokes upload-file when the request
method is PUT.

Parameters

Examples

AddLog Stage
After the server has responded to the request, the AddLog directives are
executed to record information about the transaction.

If there is more than one AddLog directive, all are executed.

The following AddLog-class functions are described in detail in this section:

• common-log records information about the request in the common log
format.

• flex-log records information about the request in a flexible, configurable
format.

• record-useragent records the client’s ip address and user-agent header.

common-log

Applicable in AddLog-class directives.

This function records request-specific data in the common log format (used by
most HTTP servers). There is a log analyzer in the /extras/log_anly
directory for Enterprise Server. The common log must have been initialized
previously by the init-cgi function.

There are also a number of free statistics generators for the common log format.

type optional parameter common to all Service-class functions

method optional parameter common to all Service-class functions

query optional parameter common to all Service-class functions

Service fn=upload-file
 Predefined SAFS for Each Stage in the Request Handling Process 97

AddLog Stage
Parameters

Examples

See Also init-clf

flex-log

Applicable in AddLog-class directives.

This function records request-specific data in a flexible log format. It may also
record requests in the common log format. There is a log analyzer in the /
extras/flexanlg directory for Enterprise Server.

There are also a number of free statistics generators for the common log format.

The log format is specified by the flex-init function call. For information
about rotating logs, see flex-rotate-init.

Parameters

name (optional) gives the name of a log file, which must have
been given as a parameter to the init-clf Init function.
If no name is given, the entry is recorded in the global log
file.

iponly (optional) instructs the server to log the IP address of the
remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus.conf file. The value of iponly has no
significance, as long as it exists; you may use iponly=1.

Log all accesses to the global log file

AddLog fn=common-log

Log accesses from outside our subnet (198.93.5.*) to
nonlocallog

<Client ip="*~198.93.5.*">

AddLog fn=common-log name=nonlocallog

</Client>

name (optional) gives the name of a log file, which must have
been given as a parameter to the flex-init Init function.
If no name is given, the entry is recorded in the global log
file.
98 NSAPI Programmer’s Guide for Enterprise Server 4.0

AddLog Stage
Examples

See Also flex-rotate-init, flex-init, init-clf, common-log, record-
useragent

record-useragent

Applicable in AddLog-class directives.

The record-useragent function records the IP address of the client, followed
by its User-Agent HTTP header. This indicates what version of Netscape
Navigator (or other client) was used for this transaction.

Parameters

Examples

See Also flex-init, init-clf, common-log, record-useragent, flex-log

iponly (optional) instructs the server to log the IP address of the
remote client rather than looking up and logging the DNS
name. This will improve performance if DNS is off in the
magnus.conf file. The value of iponly has no
significance, as long as it exists; you may use iponly=1.

Log all accesses to the global log file

AddLog fn=flex-log

Log accesses from outside our subnet (198.93.5.*) to

nonlocallog

<Client ip="*~198.93.5.*">

AddLog fn=flex-log name=nonlocallog

</Client>

name (optional) gives the name of a log file, which must have
been given as a parameter to the init-clf Init function.
If no name is given, the entry is recorded in the global log
file.

Record the client ip address and user-agent to browserlog
AddLog fn=record-useragent name=browserlog
 Predefined SAFS for Each Stage in the Request Handling Process 99

Error Stage
Error Stage
If a server application function results in an error, it sets the HTTP response
status code and returns the value REQ_ABORTED. When this happens, the server
stops processing the request. Instead, it searches for an Error directive matching
the HTTP response status code or its associated reason phrase, and executes
the directive’s function. If the server does not find a matching Error directive, it
returns the response status code to the client.

The following Error-class functions are described in detail in this section:

• send-error sends an HTML file to the client in place of a specific HTTP
response status.

send-error

Applicable in Error-class directives.

The send-error function sends an HTML file to the client in place of a specific
HTTP response status. This allows the server to present a friendly message
describing the problem. The HTML page may contain images and links to the
server’s home page or other pages.

Parameters
path specifies the full file system path of an HTML file to send to

the client. The file is sent as text/html regardless of its
name or actual type. If the file does not exist, the server
sends a simple default error page.

reason (optional) is the text of one of the reason strings (such as
“Unauthorized” or “Forbidden”). The string is not case
sensitive.
100 NSAPI Programmer’s Guide for Enterprise Server 4.0

Error Stage
Examples

code (optional) is a three-digit number representing the HTTP
response status code, such as 401 or 407.

This can be any HTTP response status code or reason
phrase according to the HTTP specification.

The following is a list of common HTTP response status
codes and reason strings.

• 401 Unauthorized.

• 403 Forbidden.

• 404 Not Found.

• 500 Server Error.

Error fn=send-error code=401
path=/netscape/server4/docs/errors/401.html
 Predefined SAFS for Each Stage in the Request Handling Process 101

Error Stage
102 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

4
Creating Custom SAFs
This chapter describes how to write your own NSAPI plugins that define
custom Server Application Functions (SAFs). Creating plugins allows you to
modify or extend the Enterprise Server’s built-in functionality. For example,
you can modify the server to handle user authorization in a special way or
generate dynamic HTML pages based on information in a database.

The sections in this chapter are:

• The SAF Interface

• SAF Parameters

• Result Codes

• Creating and Using Custom SAFs

• Overview of NSAPI C Functions

• Required Behavior of SAFs for Each Directive

• CGI to NSAPI Conversion

Before writing custom SAFs, you should familiarize yourself with the request
handling process, as described in Chapter 1, “Basics of Enterprise Server
Operation.”. Also, before writing a custom SAF, check if a built-in SAF already
accomplishes the tasks you have in mind. See Chapter 3, “Predefined SAFS for
Each Stage in the Request Handling Process,” for a list of the pre-defined SAFs.

For a complete list of the NSAPI routines for implementing custom SAFs, see
Chapter 5, “NSAPI Function Reference.”
Chapter 4, Creating Custom SAFs 103

The SAF Interface
The SAF Interface
All SAFs (custom and built-in) have the same C interface regardless of the
request-handling step for which they are written. They are small functions
designed for a specific purpose within a specific request-response step. They
receive parameters from the directive that invokes them in the obj.conf file,
from the server, and from previous SAFs.

Here is the C interface for a SAF:

int function(pblock *pb, Session *sn, Request *rq);

The next section discusses the parameters in detail.

The SAF returns a result code which indicates whether and how it succeeded.
The server uses the result code from each function to determine how to
proceed with processing the request. See the section "Result Codes" for details
of the result codes.

SAF Parameters
This section discusses the SAF parameters in detail. The parameters are:

• pb (parameter block)-- contains the parameters from the directive that
invokes the SAF in the obj.conf file.

• sn (session)-- contains information relating to a single TCP/IP session.

• rq (request)-- contains information relating to the current request.

pb (parameter block)

The pb parameter is a pointer to a pblock data structure that contains values
specified by the directive that invokes the SAF. A pblock data structure
contains a series of name/value pairs.

For example, a directive that invokes the basic-nsca function might look like:

AuthTrans fn=basic-ncsa auth-type=basic
dbm=/netscape/server4/userdb/rs
104 NSAPI Programmer’s Guide for Enterprise Server 4.0

SAF Parameters
In this case, the pb parameter passed to basic-ncsa contains name/value pairs
that correspond to auth-type=basic and dbm=/netscape/server4/userdb/
rs.

NSAPI provides a set of functions for working with pblock data structures. For
example, pblock_findval() returns the value for a given name in a pblock.
See "Parameter Block Manipulation Routines" for a summary of the most
commonly used functions for working with parameter blocks.

sn (session)

The sn parameter is a pointer to a Session data structure. This parameter
contains variables related to an entire session (that is, the time between the
opening and closing of the TCP/IP connection between the client and the
server). The same sn pointer is passed to each SAF called within each request
for an entire session. The following list describes the most important fields in
this data structure.

(See Chapter 5, “NSAPI Function Reference,” for information about NSAPI
routines for manipulating the Session data structure):

• sn->client

is a pointer to a pblock containing information about the client such as its
IP address, DNS name, or certificate. If the client does not have a DNS
name or if it cannot be found, it will be set to the client’s IP number.

• sn->csd

is a platform-independent client socket descriptor. You will pass this to the
routines for reading from and writing to the client.

rq (request)

The rq parameter is a pointer to a request data structure. This parameter
contains variables related to the current request, such as the request headers,
URI, and local file system path. The same request pointer is passed to each
SAF called in the request-response process for an HTTP request.
 Creating Custom SAFs 105

SAF Parameters
The following list describes the most important fields in this data structure (See
Chapter 5, “NSAPI Function Reference,” for information about NSAPI routines
for manipulating the Request data structure).

• rq->vars

is a pointer to a pblock containing the server’s “working” variables. This
includes anything not specifically found in the following three pblocks. The
contents of this pblock vary depending on the specific request and the type
of SAF. For example, an AuthTrans SAF may insert an "auth-user"
parameter into rq->vars which can be used subsequently by a PathCheck
SAF.

• rq->reqpb

is a pointer to a pblock containing elements of the HTTP request. This
includes the HTTP method (GET, POST, ...), the URI, the protocol (normally
HTTP/1.0), and the query string. This pblock does not normally change
throughout the request-response process.

• rq->headers

is a pointer to a pblock containing all the request headers (such as User-
Agent, If-Modified-Since, ...) received from the client in the HTTP request.
See Appendix G, “HyperText Transfer Protocol,”for more information about
request headers. This pblock does not normally change throughout the
request-response process.

• rq->srvhdrs

is a pointer to a pblock containing the response headers (such as Server,
Date, Content-type, Content-length,...) to be sent to the client in the HTTP
response. See Appendix G, “HyperText Transfer Protocol,” for more
information about response headers.

• rq->directive_is_cacheable

is a flag which may be used by your SAF to tell the server that your SAF is
cacheable.

The server attempts to cache requests that generate the same response
when requested by different clients at different times. That is, if a client
requests /mfg/proc/item.txt, and then another client requests /mfg/
proc/item.txt, the server's response is the same as long as /mfg/proc/
item.txt doesn't change between the requests. When the server can avoid
calling the SAFs for a request, it can return the response faster.
106 NSAPI Programmer’s Guide for Enterprise Server 4.0

Result Codes
The flag is set to 0 on entry to each SAF. If you do not set this flag to 1
before your SAF returns, the server does not try to cache the request, and
each subsequent request calls your SAF again. If your SAF sets it to 1, and
all other SAFs called for this request also set the flag, the server caches the
request and does not call your SAF when another request is made for the
same resource.

If your SAF performs access control, logging, depends on the client IP
address, the user-agent, or any headers the client sends, it should not set
directive_is_cacheable. Otherwise you should set
directive_is_cacheable to 1.

During development, you may disable server caching by adding the
following line at the top of the obj.conf file:

Init fn=cache-init disable=true

Don’t forget to stop and start the server after saving the file. This disables
server caching so that your SAF will always be called.

The rq parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains
whatever values were inserted or modified by previously executed SAFs. On
output, rq contains any modifications or additional information inserted by the
SAF. Some SAFs depend on the existence of specific information provided at an
earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars which were previously inserted by an AuthTrans SAF.

Result Codes
Upon completion, a SAF returns a result code. The result code indicates what
the server should do next. The result codes are:

• REQ_PROCEED

indicates that the SAF achieved its objective. For some request-response
steps (AuthTrans, NameTrans, Service, and Error), this tells the server to
proceed to the next request-response step, skipping any other SAFs in the
current step. For the other request-response steps (PathCheck, ObjectType,
and AddLog), the server proceeds to the next SAF in the current step.

• REQ_NOACTION
 Creating Custom SAFs 107

Creating and Using Custom SAFs
indicates the SAF took no action. The server continues with the next SAF in
the current server step.

• REQ_ABORTED

indicates that an error occurred and an HTTP response should be sent to
the client to indicate the cause of the error. A SAF returning REQ_ABORTED
should also set the HTTP response status code. If the server finds an Error
directive matching the status code or reason phrase, it executes the SAF
specified. If not, the server sends a default HTTP response with the status
code and reason phrase plus a short HTML page reflecting the status code
and reason phrase for the user. The server then goes to the first AddLog
directive.

• REQ_EXIT

indicates the connection to the client was lost. This should be returned
when the SAF fails in reading or writing to the client. The server then goes
to the first AddLog directive.

Creating and Using Custom SAFs
Custom SAFs are functions in shared libraries that are loaded and called by the
server. Follow these steps to create a custom SAF:

1. Write the Source Code

using the NSAPI functions. Each SAF is written for a specific directive.

2. Compile and Link

the source code to create a shared library (.so, .sl, or .dll) file.

3. Load and Initialize the SAF

by editing the obj.conf file to:

-- Load the shared library file containing your custom SAF(s).

-- Initialize the SAF if necessary.

4. Instruct the Server to Call the SAFs

by editing obj.conf to call your custom SAF(s) at the appropriate time.
108 NSAPI Programmer’s Guide for Enterprise Server 4.0

Creating and Using Custom SAFs
5. Stop and Start the Server.

6. Test the SAF

by accessing your server from a browser with a URL that triggers your
function.

The following sections describe these steps in greater detail.

Write the Source Code

Write your custom SAFs using NSAPI functions. For a summary of some of the
most commonly used NSAPI functions, see the section "Overview of NSAPI C
Functions." Chapter 5, “NSAPI Function Reference,” provides information about
all of the routines available.

For examples of custom SAFs, see nsapi/examples/ in the server root
directory and also see Chapter 6, “Examples of Custom SAFsS.”

The signature for all SAFs is:

int function(pblock *pb, Session *sn, Request *rq);

For more details on the parameters, see the section "SAF Parameters."

The Enterprise Server runs as a multi-threaded single process. On Unix
platforms there are actually two processes (a parent and a child) for historical
reasons. The parent process performs some initialization and forks the child
process. The child process performs further initialization and handles all the
HTTP requests.

Keep these things in mind when writing your SAF. Write thread-safe code.
Blocking may affect performance. Write small functions with parameters and
configure them in obj.conf. Carefully check and handle all errors. Also log
them so that you can determine the source of problems and fix them.

If necessary, write an initialization function that performs initialization tasks
required by your new SAFs. The initialization function has the same signature
as other SAFs:

int function(pblock *pb, Session *sn, Request *rq);
 Creating Custom SAFs 109

Creating and Using Custom SAFs
SAFs expect to be able to obtain certain types of information from their
parameters. In most cases, parameter block (pblock) data structures provide
the fundamental storage mechanism for these parameters A pblock maintains
its data as a collection of name-value pairs. For a summary of the most
commonly used functions for working with pblock structures, see "Parameter
Block Manipulation Routines."

When defining a SAF, you do not specifically state which directive it is written
for. However, each SAF must be written for a specific directive (such as Init,
AuthTrans, Service and so on). Each directive expects its SAFs to do
particular things, and your SAF must conform to the expectations of the
directive for which it was written. For details of what each directive expects of
its SAFs, see the section "Required Behavior of SAFs for Each Directive."

Compile and Link

Compile and link your code with the native compiler for the target platform.
For Windows NT, use Microsoft Visual C++ 6.0 or newer when compiling for
Enterprise Server 4.0. You must have an import list that specifies all global
variables and functions to access from the server binary. Use the correct
compiler and linker flags for your platform. Refer to the example Makefile in
the nsapi/examples directory. On Windows NT link to nshttpd3x.lib or
nshttpd40.lib as appropriate in the plugins/lib directory.

The include directory in the server-root directory in Enterprise Server 3.x or
in server-root/plugins in Enterprise Server 4.0 contains the NSAPI header
file. All the NSAPI header information is now contained in one file called
nsapi.h.

Load and Initialize the SAF

For each shared library (plugin) containing custom SAFs to be loaded into the
Enterprise Server, add an Init directive that invokes the load-modules SAF to
obj.conf.

The syntax for a directive that calls load-modules is:
Init fn=load-modules shlib=[path]sharedlibname
funcs="SAF1,...,SAFn"

• shlib is the local file system path to the shared library (plugin).
110 NSAPI Programmer’s Guide for Enterprise Server 4.0

Creating and Using Custom SAFs
• funcs is a comma-separated list of function names to be loaded from the
shared library. Function names are case-sensitive. You may use dash (-) in
place of underscore (_) in function names. There should be no spaces in
the function name list.

If the new SAFs require initialization, be sure that the initialization function
is included in the funcs list.

For example, if you created a shared library animations.so that defines two
SAFs do_small_anim() and do_big_anim() and also defines the initialization
function init_my_animations, you would add the following directive to load
the plugin:
Init fn=load-modules shlib=[path]animations.so
funcs="do_small_anim,do_big_anim,init_my_animations"

If necessary, also add an Init directive that calls the initialization function for
the newly loaded plugin. For example, if you defined the function
init_my_new_SAF() to perform an operation on the maxAnimLoop parameter,
you would a directive such as the following to obj.conf:

Init fn=init_my_animations maxAnimLoop=5

Instruct the Server to Call the SAFs

Next, add directives to obj.conf to instruct the server to call each custom SAF
at the appropriate time. The syntax for directives is:

Directive fn=function-name [name1="value1"]...[nameN="valueN"]

• Directive is one of the server directives, such as Init, AuthTrans, and so
on.

• function-name is the name of the SAF to execute.

• nameN="valueN" are the names and values of parameters which are passed
to the SAF.

Depending on what your new SAF does, you might need to add just one
directive to obj.conf or you might need to add more than one directive to
provide complete instructions for invoking the new SAF.
 Creating Custom SAFs 111

Creating and Using Custom SAFs
For example, if you define a new AuthTrans or PathCheck SAF you could just
add an appropriate directive in the default object. However, if you define a
new Service SAF to be invoked only when the requested resource is in a
particular directory or has a new kind of file extension, you would need to take
extra steps.

If your new Service SAF is to be invoked only when the requested resource has
a new kind of file extension, you might need to add an entry to the MIME types
file so that the type value gets set properly during the ObjectType stage. Then
you could add a Service directive to the default object that specifies the
desired type value.

If your new Service SAF is to be invoked only when the requested resource is
in a particular directory, you might need to define a NameTrans directive that
generates a name or ppath value that matches another object, and then in the
new object you could invoke the new Service function.

For example, suppose your plugin defines two new SAFs, do_small_anim()
and do_big_anim() which both take speed parameters. These functions run
animations. All files to be treated as small animations reside in the directory D:/
Netscape/server4/docs/animations/small, while all files to be treated as full
screen animations reside in the directory D:/Netscape/server4/docs/
animations/fullscreen.

To ensure that the new animation functions are invoked whenever a client
sends a request for either a small or fullscreen animation, you would add
NameTrans directives to the default object to translate the appropriate URLs to
the corresponding pathnames and also assign a name to the request.

NameTrans fn=pfx2dir from="/animations/small"
dir="D:/Netscape/server4/docs/animations/small" name="small_anim"

NameTrans fn=pfx2dir from="/animations/fullscreen"
dir="D:/Netscape/server4/docs/animations/fullscreen"
name="fullscreen_anim"

You also need to define objects that contain the Service directives that run the
animations and specify the speed parameter.

<Object name="small_anim">
Service fn=do_small_anim speed=40
</Object>

<Object name="fullscreen_anim">
Service fn=do_big_anim speed=20
</Object>
112 NSAPI Programmer’s Guide for Enterprise Server 4.0

Overview of NSAPI C Functions
Stop and Start the Server

After modifying obj.conf, you need to start and stop the server. On Unix you
may execute the shell scripts stop and start in the servers home directory. Do
not use restart on Unix since the server will not reload your shared library
after it has been loaded once.

On Windows NT you may use the Services Control Panel to stop and start the
server. Once you have started the server with your shared library, you’ll have to
stop it before you can build your shared library again.

You can also use the Server Manager interface to re-load obj.conf and to start
and stop the server.

If there are problems during startup, check the error log.

Test the SAF

Test your SAF by accessing your server from a browser with a URL that triggers
your function. For example, if your new SAF is triggered by requests to
resources in http://server-name/animations/small, try requesting a valid
resource that starts with that URI.

You should disable caching in your browser so that the server is sure to be
accessed. In Navigator you may hold the shift key while clicking the Reload
button to ensure that the cache is not used. (Note that the shift-reload trick
does not always force the client to fetch images from source if the images are
already in the cache.)

You may also wish to disable the server cache using the cache-init SAF.

Examine the access log and error log to help with debugging.

Overview of NSAPI C Functions
NSAPI provides a set of C functions that are used to implement SAFs. They
serve several purposes. They provide platform-independence across Netscape
Server operating system and hardware platforms. They provide improved
performance. They are thread-safe which is a requirement for SAFs. They
 Creating Custom SAFs 113

Overview of NSAPI C Functions
prevent memory leaks. And they provide functionality necessary for
implementing SAFs. You should always use these NSAPI routines when
defining new SAFs.

This section provides an overview of the function categories available and
some of the more commonly used routines. All the public routines are detailed
in Chapter 5, “NSAPI Function Reference.”

The main categories of NSAPI functions are:

• Parameter Block Manipulation Routines

• Protocol Utilities for Service SAFs

• Memory Management

• File I/O

• Network I/O

• Threads

• Utilities

Parameter Block Manipulation Routines

The parameter block manipulation functions provide routines for locating,
adding, and removing entries in a pblock data structure include:

• pblock_findval()returns the value for a given name in a pblock.

• pblock_nvinsert() adds a new name-value entry to a pblock.

• pblock_remove() removes a pblock entry by name from a pblock. The
entry is not disposed. Use param_free() to free the memory used by the
entry.

• param_free() frees the memory for the given pblock entry.

• pblock_pblock2str() creates a new string containing all the name-value
pairs from a pblock in the form "name=value name=value". This can be a
useful function for debugging.
114 NSAPI Programmer’s Guide for Enterprise Server 4.0

Overview of NSAPI C Functions
Protocol Utilities for Service SAFs

Protocol utilities provide functionality necessary to implement Service SAFs:

• request_header() returns the value for a given request header name,
reading the headers if necessary. This function must be used when
requesting entries from the browser header pblock (rq->headers).

• protocol_status() sets the HTTP response status code and reason
phrase

• protocol_start_response() sends the HTTP response and all HTTP
headers to the browser.

Memory Management

Memory management routines provide fast, platform-independent versions of
the standard memory management routines. They also prevent memory leaks
by allocating from a temporary memory (called "pooled" memory) for each
request and then disposing the entire pool after each request. There are
wrappers for standard memory routines for using permanent memory. To
disable pooled memory for debugging, see the built-in SAF pool-init in
Chapter 3, “Predefined SAFS for Each Stage in the Request Handling Process.”
• MALLOC()

• FREE()

• STRDUP()

• REALLOC()

• CALLOC()

• PERM_MALLOC()

• PERM_FREE()

• PERM_STRDUP()

• PERM_REALLOC()

• PERM_CALLOC()

File I/O

The file I/O functions provides platform-independent, thread-safe file I/O
routines.
 Creating Custom SAFs 115

Overview of NSAPI C Functions
• system_fopenRO() opens a file for read-only access.

• system_fopenRW() opens a file for read-write access, creating the file if
necessary.

• system_fopenWA() opens a file for write-append access, creating the file if
necessary.

• system_fclose() closes a file.

• system_fread() reads from a file.

• system_fwrite() writes to a file.

• system_fwrite_atomic() locks the given file before writing to it. This
avoids interference between simultaneous writes by multiple processes or
threads.

Network I/O

Network I/O functions provide platform-independent, thread-safe network I/O
routines. These routines work with SSL when it’s enabled.

• netbuf_grab() reads from a network buffer’s socket into the network
buffer.

• netbuf_getc() gets a character from a network buffer.

• net_write() writes to the network socket.

Threads

Thread functions include functions for creating your own threads which are
compatible with the server’s threads. There are also routines for critical sections
and condition variables.

• systhread_start() creates a new thread.

• systhread_sleep() puts a thread to sleep for a given time.

• crit_init() creates a new critical section variable.

• crit_enter() gains ownership of a critical section.

• crit_exit() surrenders ownership of a critical section.

• crit_terminate() disposes of a critical section variable.

• condvar_init() creates a new condition variable.

• condvar_notify() awakens any threads blocked on a condition variable.
116 NSAPI Programmer’s Guide for Enterprise Server 4.0

Required Behavior of SAFs for Each Directive
• condvar_wait() blocks on a condition variable.

• condvar_terminate() disposes of a condition variable.

Utilities

Utility functions include platform-independent, thread-safe versions of many
standard library functions (such as string manipulation) as well as new utilities
useful for NSAPI.

• daemon_atrestart() (Unix only) registers a user function to be called
when the server is sent a restart signal (HUP) or at shutdown.

• util_getline() gets the next line (up to a LF or CRLF) from a buffer.

• util_hostname() gets the local hostname as a fully qualified domain
name.

• util_later_than() compares two dates.

• util_sprintf() same as standard library routine sprintf().

• util_strftime() same as standard library routine strftime().

• util_uri_escape() converts the special characters in a string into URI
escaped format.

• util_uri_unescape() converts the URI escaped characters in a string
back into special characters.

Required Behavior of SAFs for Each Directive
When writing a new SAF, you should define it to do certain things, depending
on which stage of the request handling process will invoke it. For example,
SAFs to be invoked during the Init stage must conform to different
requirements than SAFs to be invoked during the Service stage.

This section outlines the expected behavior of SAFs used at each stage in the
request handling process.

• Init SAFs

• AuthTrans SAFs

• NameTrans SAFs

• PathCheck SAFs

• ObjectType SAFs
 Creating Custom SAFs 117

Required Behavior of SAFs for Each Directive
• Service SAFs

• Error SAFs

• AddLog SAFs

The rq parameter is the primary mechanism for passing along information
throughout the request-response process. On input to a SAF, rq contains
whatever values were inserted or modified by previously executed SAFs. On
output, rq contains any modifications or additional information inserted by the
SAF. Some SAFs depend on the existence of specific information provided at an
earlier step in the process. For example, a PathCheck SAF retrieves values in
rq->vars which were previously inserted by an AuthTrans SAF.

Init SAFs

• Purpose: Initialize at startup.

• Called at server startup and restart.

• rq and sn are NULL.

• Initialize any shared resources such as files and global variables.

• Can register callback function with daemon_atrestart() to clean up.

• On error, insert error parameter into pb describing the error and return
REQ_ABORTED.

• If successful, return REQ_PROCEED.

AuthTrans SAFs

• Purpose: Verify any authorization information. Only basic authorization is
currently defined in the HTTP/1.0 specification.

• Check for Authorization header in rq->headers which contains the
authorization type and uu-encoded user and password information. If
header was not sent return REQ_NOACTION.

• If header exists, check authenticity of user and password.
118 NSAPI Programmer’s Guide for Enterprise Server 4.0

Required Behavior of SAFs for Each Directive
• If authentic, create auth-type, plus auth-user and/or auth-group
parameter in rq->vars to be used later by PathCheck SAFs.

• Return REQ_PROCEED if the user was successfully authenticated,
REQ_NOACTION otherwise.

NameTrans SAFs

• Purpose: Convert logical URI to physical path

• Perform operations on logical path (ppath in rq->vars) to convert it into a
full local file system path.

• Return REQ_PROCEED if ppath in rq->vars contains the full local file
system path, or REQ_NOACTION if not.

• To redirect the client to another site, change ppath in rq->vars to /URL.
Add url to rq->vars with full URL (for example., http://
home.netscape.com/). Return REQ_PROCEED.

PathCheck SAFs

• Purpose: Check path validity and user’s access rights.

• Check auth-type, auth-user and/or auth-group in rq->vars.

• Return REQ_PROCEED if user (and group) is authorized for this area (ppath
in rq->vars).

• If not authorized, insert WWW-Authenticate to rq->srvhdrs with a value
such as: Basic; Realm=\"Our private area\". Call
protocol_status() to set HTTP response status to
PROTOCOL_UNAUTHORIZED. Return REQ_ABORTED.

ObjectType SAFs

• Purpose: Determine content-type of data.

• If content-type in rq->srvhdrs already exists, return REQ_NOACTION.
 Creating Custom SAFs 119

Required Behavior of SAFs for Each Directive
• Determine the MIME type and create content-type in rq->srvhdrs

• Return REQ_PROCEED if content-type is created, REQ_NOACTION otherwise

Service SAFs

• Purpose: Generate and send the response to the client.

• A Service SAF is only called if each of the optional parameters type,
method, and query specified in the directive in obj.conf match the
request.

• Remove existing "content-type" from rq->srvhdrs. Insert correct "content-
type" in rq->srvhdrs.

• Create any other headers in rq->srvhdrs.

• Call protocol_status() to set HTTP response status.

• Call protocol_start_response() to send HTTP response and headers.

• Generate and send data to the client using net_write().

• Return REQ_PROCEED if successful, REQ_EXIT on write error, REQ_ABORTED
on other failures.

Error SAFs

• Purpose: Respond to an HTTP status error condition.

• The Error SAF is only called if each of the optional parameters code and
reason specified in the directive in obj.conf match the current error.

• Error SAFs do the same as Service SAFs, but only in response to an HTTP
status error condition.

AddLog SAFs

• Purpose: Log the transaction to a log file.
120 NSAPI Programmer’s Guide for Enterprise Server 4.0

CGI to NSAPI Conversion
• AddLog SAFs can use any data available in pb, sn, or rq to log this
transaction.

• Return REQ_PROCEED.

CGI to NSAPI Conversion
You may have a need to convert a CGI into a SAF using NSAPI. Since the CGI
environment variables are not available to NSAPI, you’ll retrieve them from the
NSAPI parameter blocks. The table below indicates how each CGI environment
variable can be obtained in NSAPI.

Keep in mind that your code must be thread-safe under NSAPI. You should use
NSAPI functions which are thread-safe. Also, you should use the NSAPI
memory management and other routines for speed and platform independence.

Table 4.1

CGI getenv() NSAPI

AUTH_TYPE pblock_findval("auth-type", rq->vars);

AUTH_USER pblock_findval("auth-user", rq->vars);

CONTENT_LENGTH pblock_findval("content-length", rq-
>srvhdrs);

CONTENT_TYPE pblock_findval(content-type", rq-
>srvhdrs);

GATEWAY_INTERFACE "CGI/1.1"

HTTP_* pblock_findval("*", rq->headers); (* is
lower-case, dash replaces underscore)

PATH_INFO pblock_findval("path-info", rq->vars);

PATH_TRANSLATED pblock_findval(path-translated", rq-
>vars);

QUERY_STRING pblock_findval(query", rq->reqpb); (GET
only, POST puts query string in body data)

REMOTE_ADDR pblock_findval("ip", sn->client);
 Creating Custom SAFs 121

CGI to NSAPI Conversion
REMOTE_HOST session_dns(sn) ? session_dns(sn) :
pblock_findval("ip", sn->client);

REMOTE_IDENT pblock_findval("from", rq->headers); (not
usually available)

REMOTE_USER pblock_findval("auth-user", rq->vars);

REQUEST_METHOD pblock_findval("method", req->reqpb);

SCRIPT_NAME pblock_findval("uri", rq->reqpb);

SERVER_NAME char *util_hostname();

SERVER_PORT conf_getglobals()->Vport; (as a string)

SERVER_PROTOCOL pblock_findval("protocol", rq->reqpb);

SERVER_SOFTWARE MAGNUS_VERSION_STRING

Netscape specific:

CLIENT_CERT pblock_findval("auth-cert", rq->vars)

HOST char *session_maxdns(sn); (may be null)

HTTPS security_active ? "ON" : "OFF";

HTTPS_KEYSIZE pblock_findval("keysize", sn->client);

HTTPS_SECRETKEYSIZ
E

pblock_findval("secret-keysize", sn-
>client);

QUERY pblock_findval(query", rq->reqpb); (GET
only, POST puts query string in entity-body
data)

SERVER_URL http_uri2url_dynamic("","", sn, rq);

Table 4.1

CGI getenv() NSAPI
122 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

5
NSAPI Function Reference
This chapter lists all the public C functions and macros of the Netscape Server
Applications Programming Interface (NSAPI) in alphabetic order. These are the
functions you use when writing your own Server Application Functions (SAFs).
For information on the built-in SAFs, see Chapter 3, “Predefined SAFS for Each
Stage in the Request Handling Process”.

Each function provides the name, syntax, parameters, return value, a
description of what the function does, and sometimes an example of its use
and a list of related functions.

For more information on data structures, see Appendix A, “Data Structure
Reference,”and also look in the nsapi.h header file in the include directory
in the build for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
For an alphabetical list of function names, see Appendix H, “Alphabetical List
of NSAPI Functions and Macros.”

C D F L M N P R S U
Chapter 5, NSAPI Function Reference 123

NSAPI Functions (in Alphabetical Order)
C

CALLOC()

The CALLOC macro is a platform-independent substitute for the C library routine
calloc. It allocates num*size bytes from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool-init built-
in SAF), PERM_CALLOC and CALLOC both obtain their memory from the system
heap.

Syntax void *CALLOC(int num, int size)

Returns A void pointer to a block of memory.

Parameters int num is the number of elements to allocate.

int size is the size in bytes of each element.

Example /* Allocate space for an array of 100 char pointers */
char *name;
name = (char *) CALLOC(100, sizeof(char *));

See also FREE, REALLOC, STRDUP, PERM_MALLOC, PERM_FREE, PERM_REALLOC,
PERM_STRDUP

cinfo_find()

The cinfo_find() function uses the MIME types information to find the type,
encoding, and/or language based on the extension(s) of the Universal Resource
Identifier (URI) or local file name. Use this information to send headers (rq-
>srvhdrs) to the client indicating the content-type, content-encoding, and
content-language of the data it will be receiving from the server.

The name used is everything after the last slash (/) or the whole string if no
slash is found. File name extensions are not case-sensitive. The name may
contain multiple extensions separated by period (.) to indicate type, encoding,
or language. For example, the URI "a/b/filename.jp.txt.zip" could represent a
Japanese language, text/plain type, zip encoded file.

Syntax cinfo *cinfo_find(char *uri);

Returns A pointer to a newly allocated cinfo structure if content info was found or
NULL if no content was found
124 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
The cinfo structure that is allocated and returned contains pointers to the
content-type, content-encoding, and content-language, if found. Each is a
pointer into static data in the types database, or NULL if not found. Do not free
these pointers. You should free the cinfo structure when you are done using
it.

Parameters char *uri is a Universal Resource Identifier (URI) or local file name. Multiple
file name extensions should be separated by periods (.).

condvar_init()

The condvar_init function is a critical-section function that initializes and
returns a new condition variable associated with a specified critical-section
variable. You can use the condition variable to prevent interference between
two threads of execution.

Syntax CONDVAR condvar_init(CRITICAL id);

Returns A newly allocated condition variable (CONDVAR).

Parameters CRITICAL id is a critical-section variable.

See also condvar_notify, condvar_terminate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_terminate.

condvar_notify()

The condvar_notify function is a critical-section function that awakens any
threads that are blocked on the given critical-section variable. Use this function
to awaken threads of execution of a given critical section. First, use
crit_enter to gain ownership of the critical section. Then use the returned
critical-section variable to call condvar_notify to awaken the threads. Finally,
when condvar_notify returns, call crit_exit to surrender ownership of the
critical section.

Syntax void condvar_notify(CONDVAR cv);

Returns void

Parameters CONDVAR cv is a condition variable.

See also condvar_init, condvar_terminate, condvar_wait, crit_init,
crit_enter, crit_exit, crit_terminate.
 NSAPI Function Reference 125

NSAPI Functions (in Alphabetical Order)
condvar_terminate()

The condvar_terminate function is a critical-section function that frees a
condition variable. Use this function to free a previously allocated condition
variable.

Warning Terminating a condition variable that is in use can lead to unpredictable results.

Syntax void condvar_terminate(CONDVAR cv);

Returns void

Parameters CONDVAR cv is a condition variable.

See also condvar_init, condvar_notify, condvar_wait, crit_init,
crit_enter, crit_exit, crit_terminate.

condvar_wait()

Critical-section function that blocks on a given condition variable. Use this
function to wait for a critical section (specified by a condition variable
argument) to become available. The calling thread is blocked until another
thread calls condvar_notify with the same condition variable argument. The
caller must have entered the critical section associated with this condition
variable before calling condvar_wait.

Syntax void condvar_wait(CONDVAR cv);

Returns void

Parameters CONDVAR cv is a condition variable.

See also condvar_init, condvar_notify, condvar_terminate, crit_init,
crit_enter, crit_exit, crit_terminate.

crit_enter()

Critical-section function that attempts to enter a critical section. Use this
function to gain ownership of a critical section. If another thread already owns
the section, the calling thread is blocked until the first thread surrenders
ownership by calling crit_exit.

Syntax void crit_enter(CRITICAL crvar);
126 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Returns void

Parameters CRITICAL crvar is a critical-section variable.

See also crit_init, crit_exit, crit_terminate.

crit_exit()

Critical-section function that surrenders ownership of a critical section. Use this
function to surrender ownership of a critical section. If another thread is
blocked waiting for the section, the block will be removed and the waiting
thread will be given ownership of the section.

Syntax void crit_exit(CRITICAL crvar);

Returns void

Parameters CRITICAL crvar is a critical-section variable.

See also crit_init, crit_enter, crit_terminate.

crit_init()

Critical-section function that creates and returns a new critical-section variable
(a variable of type CRITICAL). Use this function to obtain a new instance of a
variable of type CRITICAL (a critical-section variable) to be used in managing
the prevention of interference between two threads of execution. At the time of
its creation, no thread owns the critical section.

Warning Threads must not own or be waiting for the critical section when
crit_terminate is called.

Syntax CRITICAL crit_init(void);

Returns A newly allocated critical-section variable (CRITICAL)

Parameters none.

See also crit_enter, crit_exit, crit_terminate.
 NSAPI Function Reference 127

NSAPI Functions (in Alphabetical Order)
crit_terminate()

Critical-section function that removes a previously-allocated critical-section
variable (a variable of type CRITICAL). Use this function to release a critical-
section variable previously obtained by a call to crit_init.

Syntax void crit_terminate(CRITICAL crvar);

Returns void

Parameters CRITICAL crvar is a critical-section variable.

See also crit_init, crit_enter, crit_exit.

D

daemon_atrestart()

The daemon_atrestart function lets you register a callback function named
by fn to be used when the server receives a restart signal. Use this function
when you need a callback function to deallocate resources allocated by an
initialization function. The daemon_atrestart function is a generalization of
the magnus_atrestart function.

Syntax void daemon_atrestart(void (*fn)(void *), void *data);

Returns void

Parameters void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server
is restarted.

Example /* Register the brief_terminate function, passing it NULL */
/* to close *a log file when the server is */
/* restarted or shutdown. */
daemon_atrestart(log_close, NULL);
NSAPI_PUBLIC void log_close(void *parameter)
{
system_fclose(global_logfd);
}

128 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
F

filebuf_buf2sd()

The filebuf_buf2sd function sends a file buffer to a socket (descriptor) and
returns the number of bytes sent.

Use this function to send the contents of an entire file to the client.

Syntax int filebuf_buf2sd(filebuf *buf, SYS_NETFD sd);

Returns The number of bytes sent to the socket, if successful, or the constant IO_ERROR
if the file buffer could not be sent

Parameters filebuf *buf is the file buffer which must already have been opened.

SYS_NETFD sd is the platform-independent socket descriptor. Normally this will
be obtained from the csd (client socket descriptor) field of the sn (Session)
structure.

Example if (filebuf_buf2sd(buf, sn->csd) == IO_ERROR)
return(REQ_EXIT);

See also filebuf_close, filebuf_open, filebuf_open_nostat, filebuf_getc.

filebuf_close()

The filebuf_close function deallocates a file buffer and closes its associated
file.

Generally, use filebuf_open first to open a file buffer, and then
filebuf_getc to access the information in the file. After you have finished
using the file buffer, use filebuf_close to close it.

Syntax void filebuf_close(filebuf *buf);

Returns void

Parameters filebuf *buf is the file buffer previously opened with filebuf_open.

Example filebuf_close(buf);

See also filebuf_open, filebuf_open_nostat, filebuf_buf2sd, filebuf_getc
 NSAPI Function Reference 129

NSAPI Functions (in Alphabetical Order)
filebuf_getc()

The filebuf_getc function retrieves a character from the current file position
and returns it as an integer. It then increments the current file position.

Use filebuf_getc to sequentially read characters from a buffered file.

Syntax filebuf_getc(filebuf b);

Returns An integer containing the character retrieved, or the constant IO_EOF or
IO_ERROR upon an end of file or error.

Parameters filebuf b is the name of the file buffer.

See also filebuf_close, filebuf_buf2sd, filebuf_open,
filebuf_open_nostat

filebuf_open()

The filebuf_open function opens a new file buffer for a previously opened
file. It returns a new buffer structure. Buffered files provide more efficient file
access by guaranteeing the use of buffered file I/O in environments where it is
not supported by the operating system.

Syntax filebuf *filebuf_open(SYS_FILE fd, int sz);

Returns A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

Parameters SYS_FILE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz is the size, in bytes, to be used for the buffer.

Example filebuf *buf = filebuf_open(fd, FILE_BUFFERSIZE);
if (!buf) {

system_fclose(fd);
}

See also filebuf_getc, filebuf_buf2sd, filebuf_close,
filebuf_open_nostat
130 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
filebuf_open_nostat()

The filebuf_open_nostat function opens a new file buffer for a previously
opened file. It returns a new buffer structure. Buffered files provide more
efficient file access by guaranteeing the use of buffered file I/O in environments
where it is not supported by the operating system.

This function is the same filebuf_open, but is more efficient, since it does not
need to call the request_stat_path function. It requires that the stat
information be passed in.

Syntax filebuf* filebuf_open_nostat(SYS_FILE fd, int sz,
struct stat *finfo);

Returns A pointer to a new buffer structure to hold the data, if successful or NULL if no
buffer could be opened.

Parameters SYS_FILE fd is the platform-independent file descriptor of the file which has
already been opened.

int sz is the size, in bytes, to be used for the buffer.

struct stat *finfo is the file information of the file. Before calling the
filebuf_open_nostat function, you must call the request_stat_path
function to retrieve the file information.

Example filebuf *buf = filebuf_open_nostat(fd, FILE_BUFFERSIZE, &finfo);
if (!buf) {

system_fclose(fd);
}

See also filebuf_close, filebuf_open, filebuf_getc, filebuf_buf2sd

FREE()

The FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the space previously allocated by MALLOC, CALLOC, or
STRDUP from the request’s memory pool.

Syntax FREE(void *ptr);

Returns void

Parameters void *ptr is a (void *) pointer to a block of memory. If the pointer is not
one created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.
 NSAPI Function Reference 131

NSAPI Functions (in Alphabetical Order)
Example char *name;
name = (char *) MALLOC(256);
...
FREE(name);

See also MALLOC, CALLOC, REALLOC, STRDUP, PERM_MALLOC, PERM_FREE,
PERM_REALLOC, PERM_STRDUP

func_exec()

The func_exec function executes the function named by the fn entry in a
specified pblock. If the function name is not found, it logs the error and
returns REQ_ABORTED.

You can use this function to execute a built-in server application function (SAF)
by identifying it in the pblock.

Syntax int func_exec(pblock *pb, Session *sn, Request *rq);

Returns The value returned by the executed function or the constant REQ_ABORTED if no
function was executed.

Parameters pblock pb is the pblock containing the function name (fn) and parameters.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

See also log_error

func_find()

The func_find function returns a pointer to the function specified by name. If
the function does not exist, it returns NULL.

Syntax FuncPtr func_find(char *name);

Returns A pointer to the chosen function, suitable for dereferencing or NULL if the
function could not be found.

Parameters char *name is the name of the function.
132 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Example /* this block of code does the same thing as func_exec */
char *afunc = pblock_findval("afunction", pb);
FuncPtr afnptr = func_find(afunc);
if (afnptr)

return (afnptr)(pb, sn, rq);

See also func_exec

L

log_error()

The log_error function creates an entry in an error log, recording the date,
the severity, and a specified text.

Syntax int log_error(int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

Returns 0 if the log entry was created or -1 if the log entry was not created.

Parameters int degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN—warning
LOG_MISCONFIG—a syntax error or permission violation
LOG_SECURITY—an authentication failure or 403 error from a host
LOG_FAILURE—an internal problem
LOG_CATASTROPHE—a non-recoverable server error
LOG_INFORM—an informational message

char *func is the name of the function where the error has occurred.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

char *fmt specifies the format for the printf function that delivers the
message.

... represents a sequence of parameters for the printf function.
 NSAPI Function Reference 133

NSAPI Functions (in Alphabetical Order)
Example log_error(LOG_WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path,

system_errmsg(fd));

See also func_exec

M

magnus_atrestart()
Use the daemon-atrestart function in place of the obsolete
magnus_atrestart function.

The magnus_atrestart function lets you register a callback function named
by fn to be used when the server receives a restart signal. Use this function
when you need a callback function to deallocate resources allocated by an
initialization function.

Syntax void magnus_atrestart(void (*fn)(void *), void *data);

Returns void

Parameters void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server
is restarted.

Example /* Close log file when server is restarted */
magnus_atrestart(brief_terminate, NULL);
return REQPROCEED;

MALLOC()

The MALLOC macro is a platform-independent substitute for the C library routine
malloc. It normally allocates from the request’s memory pool. If pooled
memory has been disabled in the configuration file (with the pool-init built-
in SAF), PERM_MALLOC and MALLOC both obtain their memory from the system
heap.

Syntax void *MALLOC(int size)

Returns A void pointer to a block of memory.
134 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Parameters int size is the number of bytes to allocate.

Example /* Allocate 256 bytes for a name */
char *name;
name = (char *) MALLOC(256);

See also FREE, CALLOC, REALLOC, STRDUP, PERM_MALLOC, PERM_FREE,
PERM_CALLOC, PERM_REALLOC, PERM_STRDUP

N

net_ip2host()

The net_ip2host function transforms a textual IP address into a fully-qualified
domain name and returns it.

Syntax char *net_ip2host(char *ip, int verify);

Returns A new string containing the fully-qualified domain name, if the transformation
was accomplished or NULL if the transformation was not accomplished.

Parameters char *ip is the IP (Internet Protocol) address as a character string in dotted-
decimal notation: nnn.nnn.nnn.nnn

int verify, if non-zero, specifies that the function should verify the fully-
qualified domain name. Though this requires an extra query, you should use it
when checking access control.

net_read()

The net_read function reads bytes from a specified socket into a specified
buffer. The function waits to receive data from the socket until either at least
one byte is available in the socket or the specified time has elapsed.

Syntax int net_read (SYS_NETFD sd, char *buf, int sz, int timeout);

Returns The number of bytes read, which will not exceed the maximum size, sz. A
negative value is returned if an error has occurred, in which case errno is set
to the constant ETIMEDOUT if the operation did not complete before timeout
seconds elapsed.

Parameters SYS_NETFD sd is the platform-independent socket descriptor.
 NSAPI Function Reference 135

NSAPI Functions (in Alphabetical Order)
char *buf is the buffer to receive the bytes.

int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of timeout is not to return because not enough bytes
were read in the given time, but to limit the amount of time devoted to waiting
until some data arrives.

See also net_write

net_write()

The net_write function writes a specified number of bytes to a specified
socket from a specified buffer. It returns the number of bytes written.

Syntax int net_write(SYS_NETFD sd, char *buf, int sz);

Returns The number of bytes written, which may be less than the requested size if an
error occurred.

Parameters SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

int sz is the number of bytes to write.

Example if (net_write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO_ERROR)
return REQ_EXIT;

See also net_read

netbuf_buf2sd()

The netbuf_buf2sd function sends a buffer to a socket. You can use this
function to send data from IPC pipes to the client.

Syntax int netbuf_buf2sd(netbuf *buf, SYS_NETFD sd, int len);

Returns The number of bytes transferred to the socket, if successful or the constant
IO_ERROR if unsuccessful

Parameters netbuf *buf is the buffer to send.

SYS_NETFD sd is the platform-independent identifier of the socket.

int len is the length of the buffer.
136 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
See also netbuf_close, netbuf_getc, netbuf_grab, netbuf_open

netbuf_close()

The netbuf_close function deallocates a network buffer and closes its
associated files. Use this function when you need to deallocate the network
buffer and close the socket.

You should never close the netbuf parameter in a Session structure.

Syntax void netbuf_close(netbuf *buf);

Returns void

Parameters netbuf *buf is the buffer to close.

See also netbuf_buf2sd, netbuf_getc, netbuf_grab, netbuf_open

netbuf_getc()

The netbuf_getc function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax netbuf_getc(netbuf b);

Returns The integer representing the character, if one was retrieved or the constant
IO_EOF or IO_ERROR, for end of file or error

Parameters netbuf b is the buffer from which to retrieve one character.

See also netbuf_buf2sd, netbuf_close, netbuf_grab, netbuf_open

netbuf_grab()

The netbuf_grab function reads sz number of bytes from the network
buffer’s (buf) socket into the network buffer. If the buffer is not large enough it
is resized. The data can be retrieved from buf->inbuf on success.

This function is used by the function netbuf_buf2sd.

Syntax int netbuf_grab(netbuf *buf, int sz);

Returns The number of bytes actually read (between 1 and sz), if the operation was
successful or the constant IO_EOF or IO_ERROR, for end of file or error
 NSAPI Function Reference 137

NSAPI Functions (in Alphabetical Order)
Parameters netbuf *buf is the buffer to read into.

int sz is the number of bytes to read.

See also netbuf_buf2sd, netbuf_close, netbuf_getc, netbuf_open

netbuf_open()

The netbuf_open function opens a new network buffer and returns it. You
can use netbuf_open to create a netbuf structure and start using buffered I/O
on a socket.

Syntax netbuf* netbuf_open(SYS_NETFD sd, int sz);

Returns A pointer to a new netbuf structure (network buffer)

Parameters SYS_NETFD sd is the platform-independent identifier of the socket.

int sz is the number of characters to allocate for the network buffer.

See also netbuf_buf2sd, netbuf_close, netbuf_getc, netbuf_grab

P

param_create()

The param_create function creates a pb_param structure containing a
specified name and value. The name and value are copied. Use this function to
prepare a pb_param structure to be used in calls to pblock routines such as
pblock_pinsert.

Syntax pb_param *param_create(char *name, char *value);

Returns A pointer to a new pb_param structure.

Parameters char *name is the string containing the name.

char *value is the string containing the value.

Example pb_param *newpp = param_create("content-type","text/plain");
pblock_pinsert(newpp, rq->srvhdrs);

See also param_free, pblock_pinsert, pblock_remove
138 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
param_free()

The param_free function frees the pb_param structure specified by pp and its
associated structures. Use the param_free function to dispose a pb_param after
removing it from a pblock with pblock_remove.

Syntax int param_free(pb_param *pp);

Returns 1 if the parameter was freed or 0 if the parameter was NULL.

Parameters pb_param *pp is the name-value pair stored in a pblock.

Example if (param_free(pblock_remove("content-type", rq-srvhdrs)))
return; /* we removed it */

See also param_create, pblock_pinsert, pblock_remove

pblock_copy()

The pblock_copy function copies the entries of the source pblock and adds
them into the destination pblock. Any previous entries in the destination
pblock are left intact.

Syntax void pblock_copy(pblock *src, pblock *dst);

Returns void

Parameters pblock *src is the source pblock.

pblock *dst is the destination pblock.

Names and values are newly allocated so that the original pblock may be
freed, or the new pblock changed without affecting the original pblock.

See also pblock_create, pblock_dup, pblock_free, pblock_find,
pblock_findval, pblock_remove, pblock_nvinsert

pblock_create()

The pblock_create function creates a new pblock. The pblock maintains an
internal hash table for fast name-value pair lookups.

Syntax pblock *pblock_create(int n);

Returns A pointer to a newly allocated pblock.
 NSAPI Function Reference 139

NSAPI Functions (in Alphabetical Order)
Parameters int n is the size of the hash table (number of name-value pairs) for the
pblock.

See also pblock_copy, pblock_dup, pblock_find, pblock_findval,
pblock_free, pblock_nvinsert, pblock_remove

pblock_dup()

The pblock_dup function duplicates a pblock. It is equivalent to a sequence of
pblock_create and pblock_copy.

Syntax pblock *pblock_dup(pblock *src);

Returns A pointer to a newly allocated pblock.

Parameters pblock *src is the source pblock.

See also pblock_create, pblock_find, pblock_findval, pblock_free,
pblock_find, pblock_remove, pblock_nvinsert

pblock_find()

The pblock_find function finds a specified name-value pair entry in a pblock,
and returns the pb_param structure. If you only want the value associated with
the name, use the pblock_findval function.

This function is implemented as a macro.

Syntax pb_param *pblock_find(char *name, pblock *pb);

Returns A pointer to the pb_param structure, if one was found or NULL if name was not
found.

Parameters char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

See also pblock_copy, pblock_dup, pblock_findval, pblock_free,
pblock_nvinsert, pblock_remove
140 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
pblock_findval()

The pblock_findval function finds the value of a specified name in a pblock.
If you just want the pb_param structure of the pblock, use the pblock_find
function.

The pointer returned is a pointer into the pblock. Do not FREE it. If you want to
modify it, do a STRDUP and modify the copy.

Syntax char *pblock_findval(char *name, pblock *pb);

Returns A string containing the value associated with the name or NULL if no match
was found

Parameters char *name is the name of a name-value pair.

pblock *pb is the pblock to be searched.

Example see pblock_nvinsert().

See also pblock_create, pblock_copy, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, request_header

pblock_free()

The pblock_free function frees a specified pblock and any entries inside it. If
you want to save a variable in the pblock, remove the variable using the
function pblock_remove and save the resulting pointer.

Syntax void pblock_free(pblock *pb);

Returns void

Parameters pblock *pb is the pblock to be freed.

See also pblock_copy, pblock_create, pblock_dup, pblock_find,
pblock_findval, pblock_nvinsert, pblock_remove

pblock_nninsert()

The pblock_nninsert function creates a new entry with a given name and a
numeric value in the specified pblock. The numeric value is first converted
into a string. The name and value parameters are copied.

Syntax pb_param *pblock_nninsert(char *name, int value, pblock *pb);
 NSAPI Function Reference 141

NSAPI Functions (in Alphabetical Order)
Returns A pointer to the new pb_param structure.

Parameters char *name is the name of the new entry.

int value is the numeric value being inserted into the pblock. This
parameter must be an integer. If the value you assign is not a number, then
instead use the function pblock_nvinsert to create the parameter.

pblock *pb is the pblock into which the insertion occurs.

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, pblock_str2pblock

pblock_nvinsert()

The pblock_nvinsert function creates a new entry with a given name and
character value in the specified pblock. The name and value parameters are
copied.

Syntax pb_param *pblock_nvinsert(char *name, char *value, pblock *pb);

Returns A pointer to the newly allocated pb_param structure

Parameters char *name is the name of the new entry.

char *value is the string value of the new entry.

pblock *pb is the pblock into which the insertion occurs.

Example pblock_nvinsert("content-type", "text/html", rq->srvhdrs);

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nninsert, pblock_remove, pblock_str2pblock

pblock_pb2env()

The pblock_pb2env function copies a specified pblock into a specified
environment. The function creates one new environment entry for each name-
value pair in the pblock. Use this function to send pblock entries to a program
that you are going to execute.

Syntax char **pblock_pb2env(pblock *pb, char **env);

Returns A pointer to the environment.

Parameters pblock *pb is the pblock to be copied.
142 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
char **env is the environment into which the pblock is to be copied.

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, pblock_str2pblock

pblock_pblock2str()

The pblock_pblock2str function copies all parameters of a specified pblock
into a specified string. The function allocates additional non-heap space for the
string if needed.

Use this function to stream the pblock for archival and other purposes.

Syntax char *pblock_pblock2str(pblock *pb, char *str);

Returns The new version of the str parameter. If str is NULL, this is a new string;
otherwise it is a reallocated string. In either case, it is allocated from the
request’s memory pool.

Parameters pblock *pb is the pblock to be copied.

char *str is the string into which the pblock is to be copied. It must have
been allocated by MALLOC or REALLOC, not by PERM_MALLOC or
PERM_REALLOC (which allocate from the system heap).

Each name-value pair in the string is separated from its neighbor pair by a
space and is in the format name="value".

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, pblock_str2pblock

pblock_pinsert()

The function pblock_pinsert inserts a pb_param structure into a pblock.

Syntax void pblock_pinsert(pb_param *pp, pblock *pb);

Returns void

Parameters pb_param *pp is the pb_param structure to insert.

pblock *pb is the pblock.

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, pblock_str2pblock
 NSAPI Function Reference 143

NSAPI Functions (in Alphabetical Order)
pblock_remove()

The pblock_remove function removes a specified name-value entry from a
specified pblock. If you use this function you should eventually call
param_free in order to deallocate the memory used by the pb_param
structure.

Syntax pb_param *pblock_remove(char *name, pblock *pb);

Returns A pointer to the named pb_param structure, if it was found or NULL if the
named pb_param was not found.

Parameters char *name is the name of the pb_param to be removed.

pblock *pb is the pblock from which the name-value entry is to be removed.

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, param_create, param_free

pblock_str2pblock()

The pblock_str2pblock function scans a string for parameter pairs, adds
them to a pblock, and returns the number of parameters added.

Syntax int pblock_str2pblock(char *str, pblock *pb);

Returns The number of parameter pairs added to the pblock, if any or -1 if an error
occurred

Parameters char *str is the string to be scanned.

The name-value pairs in the string can have the format name=value or
name="value".

All back slashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no name=), it assumes the names 1, 2, 3, and
so on, depending on the string position. For example, if pblock_str2pblock
finds "some strings together", the function treats the strings as if they
appeared in name-value pairs as 1="some" 2="strings" 3="together".

pblock *pb is the pblock into which the name-value pairs are stored.

See also pblock_copy, pblock_create, pblock_find, pblock_free,
pblock_nvinsert, pblock_remove, pblock_pblock2str
144 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
PERM_CALLOC()

The PERM_CALLOC macro is a platform-independent substitute for the C library
routine calloc. It allocates num*size bytes of memory that persists after the
request that is being processed has been completed. If pooled memory has
been disabled in the configuration file (with the pool-init built-in SAF),
PERM_CALLOC and CALLOC both obtain their memory from the system heap.

Syntax void *PERM_CALLOC(int num, int size)

Returns A void pointer to a block of memory

Parameters int num is the number of elements to allocate.

int size is the size in bytes of each element.

Example /* Allocate 256 bytes for a name */
char **name;
name = (char **) PERM_CALLOC(100, sizeof(char *));

See also PERM_FREE, PERM_STRDUP, PERM_MALLOC, PERM_REALLOC, MALLOC, FREE,
CALLOC, STRDUP, REALLOC

PERM_FREE()

The PERM_FREE macro is a platform-independent substitute for the C library
routine free. It deallocates the persistent space previously allocated by
PERM_MALLOC, PERM_CALLOC, or PERM_STRDUP. If pooled memory has been
disabled in the configuration file (with the pool-init built-in SAF), PERM_FREE
and FREE both deallocate memory in the system heap.

Syntax PERM_FREE(void *ptr);

Returns void

Parameters void *ptr is a (void *) pointer to block of memory. If the pointer is not one
created by PERM_MALLOC, PERM_CALLOC, or PERM_STRDUP, the behavior is
undefined.

Example char *name;
name = (char *) PERM_MALLOC(256);
...
PERM_FREE(name);

See also FREE, MALLOC, CALLOC, REALLOC, STRDUP, PERM_MALLOC, PERM_CALLOC,
PERM_REALLOC, PERM_STRDUP
 NSAPI Function Reference 145

NSAPI Functions (in Alphabetical Order)
PERM_MALLOC()

The PERM_MALLOC macro is a platform-independent substitute for the C library
routine malloc. It provides allocation of memory that persists after the request
that is being processed has been completed. If pooled memory has been
disabled in the configuration file (with the pool-init built-in SAF),
PERM_MALLOC and MALLOC both obtain their memory from the system heap.

Syntax void *PERM_MALLOC(int size)

Returns A void pointer to a block of memory

Parameters int size is the number of bytes to allocate.

Example /* Allocate 256 bytes for a name */
char *name;
name = (char *) PERM_MALLOC(256);

See also PERM_FREE, PERM_STRDUP, PERM_CALLOC, PERM_REALLOC, MALLOC, FREE,
CALLOC, STRDUP, REALLOC

PERM_REALLOC()

The PERM_REALLOC macro is a platform-independent substitute for the C library
routine realloc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLOC, or STRDUP. The contents of the object
remains unchanged up to the lesser of the old and new sizes. If the new size is
larger, the new space is uninitialized.

Warning Calling PERM_REALLOC for a block that was allocated with MALLOC, CALLOC, or
STRDUP will not work.

Syntax void *PERM_REALLOC(vod *ptr, int size)

Returns A void pointer to a block of memory

Parameters void *ptr a void pointer to a block of memory created by PERM_MALLOC,
PERM_CALLOC, or PERM_STRDUP.

int size is the number of bytes to which the memory block should be
resized.
146 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Example char *name;
name = (char *) PERM_MALLOC(256);
if (NotBigEnough())

name = (char *) PERM_REALLOC(512);

See also PERM_MALLOC, PERM_FREE, PERM_CALLOC, PERM_STRDUP, MALLOC, FREE,
STRDUP, CALLOC, REALLOC

PERM_STRDUP()

The PERM_STRDUP macro is a platform-independent substitute for the C library
routine strdup. It creates a new copy of a string in memory that persists after
the request that is being processed has been completed. If pooled memory has
been disabled in the configuration file (with the pool-init built-in SAF),
PERM_STRDUP and STRDUP both obtain their memory from the system heap.

The PERM_STRDUP routine is functionally equivalent to

newstr = (char *) PERM_MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with PERM_STRDUP should be disposed with PERM_FREE.

Syntax char *PERM_STRDUP(char *ptr);

Returns A pointer to the new string

Parameters char *ptr is a pointer to a string.

See also PERM_MALLOC, PERM_FREE, PERM_CALLOC, PERM_REALLOC, MALLOC, FREE,
STRDUP, CALLOC, REALLOC

protocol_dump822()

The protocol_dump822 function prints headers from a specified pblock into
a specific buffer, with a specified size and position. Use this function to
serialize the headers so that they can be sent, for example, in a mail message.

Syntax char *protocol_dump822(pblock *pb, char *t, int *pos, int tsz);

Returns A pointer to the buffer, which will be reallocated if necessary.

The function also modifies *pos to the end of the headers in the buffer.

Parameters pblock *pb is the pblock structure.
 NSAPI Function Reference 147

NSAPI Functions (in Alphabetical Order)
char *t is the buffer, allocated with MALLOC, CALLOC, or STRDUP.

int *pos is the position within the buffer at which the headers are to be
dumped.

int tsz is the size of the buffer.

See also protocol_start_response, protocol_status

protocol_set_finfo()

The protocol_set_finfo function retrieves the content-length and last-
modified date from a specified stat structure and adds them to the response
headers (rq->srvhdrs). Call protocol_set_finfo before calling
protocol_start_response.

Syntax int protocol_set_finfo(Session *sn, Request *rq, struct stat
*finfo);

Returns The constant REQ_PROCEED if the request can proceed normally or the constant
REQ_ABORTED if the function should treat the request normally, but not send
any output to the client

Parameters Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into your
SAF.

stat *finfo is the stat structure for the file.

The stat structure contains the information about the file from the file system.
You can get the stat structure info using request_stat_path.

See also protocol_start_response, protocol_status

protocol_start_response()

The protocol_start_response function initiates the HTTP response for a
specified session and request. If the protocol version is HTTP/0.9, the function
does nothing, because that version has no concept of status. If the protocol
version is HTTP/1.0, the function sends a status line followed by the response
headers. Use this function to set up HTTP and prepare the client and server to
receive the body (or data) of the response.
148 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Syntax int protocol_start_response(Session *sn, Request *rq);

Returns The constant REQ_PROCEED if the operation succeeded, in which case you
should send the data you were preparing to send.

The constant REQ_NOACTION if the operation succeeded, but the request
method was HEAD in which case no data should be sent to the client.

The constant REQ_ABORTED if the operation did not succeed.

Parameters Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into
your SAF.

Example /* A noaction response from this function means the request was
HEAD */
if (protocol_start_response(sn, rq) == REQ_NOACTION) {

filebuf_close(groupbuf); /* close our file*/
return REQ_PROCEED;

}

See also protocol_status

protocol_status()

The protocol_status function sets the session status to indicate whether an
error condition occurred. If the reason string is NULL, the server attempts to
find a reason string for the given status code. If it finds none, it returns
“Unknown reason.” The reason string is sent to the client in the HTTP
response line. Use this function to set the status of the response before calling
the function protocol_start_response.

The following is a list of valid status code constants:
PROTOCOL_CONTINUE
PROTOCOL_SWITCHING
PROTOCOL_OK
PROTOCOL_CREATED
PROTOCOL_NO_RESPONSE
PROTOCOL_PARTIAL_CONTENT
PROTOCOL_REDIRECT
PROTOCOL_NOT_MODIFIED
PROTOCOL_BAD_REQUEST
PROTOCOL_UNAUTHORIZED
 NSAPI Function Reference 149

NSAPI Functions (in Alphabetical Order)
PROTOCOL_FORBIDDEN
PROTOCOL_NOT_FOUND
PROTOCOL_METHOD_NOT_ALLOWED
PROTOCOL_PROXY_UNAUTHORIZED
PROTOCOL_CONFLICT
PROTOCOL_LENGTH_REQUIRED
PROTOCOL_PRECONDITION_FAIL
PROTOCOL_ENTITY_TOO_LARGE
PROTOCOL_URI_TOO_LARGE
PROTOCOL_SERVER_ERROR
PROTOCOL_NOT_IMPLEMENTED
PROTOCOL_VERSION_NOT_SUPPORTED

Syntax void protocol_status(Session *sn, Request *rq, int n, char *r);

Returns void, but it sets values in the Session/Request designated by sn/rq for the
status code and the reason string

Parameters Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into
your SAF.

int n is one of the status code constants above.

char *r is the reason string.

Example /* if we find extra path-info, the URL was bad so tell the */
/* browser it was not found */
if (t = pblock_findval("path-info", rq->vars)) {

 protocol_status(sn, rq, PROTOCOL_NOT_FOUND, NULL);
 log_error(LOG_WARN, "function-name", sn, rq, "%s not found",

path);
 return REQ_ABORTED;

}

See also protocol_start_response

protocol_uri2url()

The protocol_uri2url function takes strings containing the given URI prefix
and URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix). See
protocol_uri2url_dynamic.
150 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

Syntax char *protocol_uri2url(char *prefix, char *suffix);

Returns A new string containing the URL

Parameters char *prefix is the prefix.

char *suffix is the suffix.

See also protocol_start_response, protocol_status, pblock_nvinsert,
protocol_uri2url_dynamic

protocol_uri2url_dynamic()

The protocol_uri2url function takes strings containing the given URI prefix
and URI suffix, and creates a newly-allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter.

The protocol_uri2url_dynamic function is similar to the
protocol_uri2url function but should be used whenever the Session and
Request structures are available. This ensures that the URL that it constructs
refers to the host that the client specified.

Syntax char *protocol_uri2url(char *prefix, char *suffix, Session *sn,
Request *rq);

Returns A new string containing the URL

Parameters char *prefix is the prefix.

char *suffix is the suffix.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into
your SAF.

See also protocol_start_response, protocol_status, protocol_uri2url
 NSAPI Function Reference 151

NSAPI Functions (in Alphabetical Order)
R

REALLOC()

The REALLOC macro is a platform-independent substitute for the C library
routine realloc. It changes the size of a specified memory block that was
originally created by MALLOC, CALLOC, or STRDUP. The contents of the object
remains unchanged up to the lesser of the old and new sizes. If the new size is
larger, the new space is uninitialized.

Warning Calling REALLOC for a block that was allocated with PERM_MALLOC,
PERM_CALLOC, or PERM_STRDUP will not work.

Syntax void *REALLOC(void *ptr, int size);

Returns A pointer to the new space if the request could be satisfied.

Parameters void *ptr is a (void *) pointer to a block of memory. If the pointer is not one
created by MALLOC, CALLOC, or STRDUP, the behavior is undefined.

int size is the number of bytes to allocate.

Example char *name;
name = (char *) MALLOC(256);
if (NotBigEnough())

name = (char *) REALLOC(512);

See also MALLOC, FREE, STRDUP, CALLOC, PERM_MALLOC, PERM_FREE,
PERM_REALLOC, PERM_CALLOC, PERM_STRDUP

request_header()

The request_header function finds an entry in the pblock containing the
client’s HTTP request headers (rq->headers). You must use this function
rather than pblock_findval when accessing the client headers since the
server may begin processing the request before the headers have been
completely

Syntax int request_header(char *name, char **value, Session *sn,
Request *rq);

Returns A result code, REQ_PROCEED if the header was found, REQ_ABORTED if the
header was not found, REQ_EXIT if there was an error reading from the client.
152 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Parameters char *name is the name of the header.

char **value is the address where the function will place the value of the
specified header. If none is found, the function stores a NULL.

Session *sn is the Session.

Request *rq is the Request.

The Session and Request parameters are the same as the ones passed into
your SAF.

See also request_create, request_free

request_stat_path()

The request_stat_path function returns the file information structure for a
specified path or, if none is specified, the path entry in the vars pblock in the
specified Request structure. If the resulting file name points to a file that the
server can read, request_stat_path returns a new file information structure.
This structure contains information on the size of the file, its owner, when it
was created, and when it was last modified.

You should use request_stat_path to retrieve information on the file you are
currently accessing (instead of calling stat directly), because this function
keeps track of previous calls for the same path and returns its cached
information.

Syntax struct stat *request_stat_path(char *path, Request *rq);

Returns Returns a pointer to the file information structure for the file named by the
path parameter. Do not free this structure. Returns NULL if the file is not valid
or the server cannot read it. In this case, it also leaves an error message
describing the problem in rq->staterr.

Parameters char *path is the string containing the name of the path. If the value of path
is NULL, the function uses the path entry in the vars pblock in the Request
structure denoted by rq.

Request *rq is the request identifier for a server application function call.

Example fi = request_stat_path(path, rq);

See also request_create, request_free, request_header
 NSAPI Function Reference 153

NSAPI Functions (in Alphabetical Order)
request_translate_uri()

The request_translate_uri function performs virtual to physical mapping
on a specified URI during a specified session. Use this function when you want
to determine which file would be sent back if a given URI is accessed.

Syntax char *request_translate_uri(char *uri, Session *sn);

Returns A path string, if it performed the mapping or NULL if it could not perform the
mapping

Parameters char *uri is the name of the URI.

Session *sn is the Session parameter that is passed into your SAF.

See also request_create, request_free, request_header

S

session_maxdns()

The session_maxdns function resolves the IP address of the client associated
with a specified session into its DNS name. It returns a newly allocated string.
You can use session_maxdns to change the numeric IP address into
something more readable.

Syntax char *session_maxdns(Session *sn);

Returns A string containing the host name or NULL if the DNS name cannot be found
for the IP address

Parameters Session *sn is the Session.

The Session is the same as the one passed to your SAF.

shexp_casecmp()

The shexp_casecmp function validates a specified shell expression and
compares it with a specified string. It returns one of three possible values
representing match, no match, and invalid comparison. The comparison (in
contrast to that of the shexp_cmp function) is not case-sensitive.
154 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Use this function if you have a shell expression like *.netscape.com and you
want to make sure that a string matches it, such as foo.netscape.com.

Syntax int shexp_casecmp(char *str, char *exp);

Returns 0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

See also shexp_cmp, shexp_match, shexp_valid

shexp_cmp()

The shexp_casecmp function validates a specified shell expression and
compares it with a specified string. It returns one of three possible values
representing match, no match, and invalid comparison. The comparison (in
contrast to that of the shexp_casecmp function) is case-sensitive.

Use this function if you have a shell expression like *.netscape.com and you
want to make sure that a string matches it, such as foo.netscape.com.

Syntax int shexp_cmp(char *str, char *exp);

Returns 0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters char *str is the string to be compared.

char *exp is the shell expression (wildcard pattern) to compare against.

Example /* Use wildcard match to see if this path is one we want */
char *path;
char *match = "/usr/netscape/*";
if (shexp_cmp(path, match) != 0)

return REQ_NOACTION; /* no match */

See also shexp_casecmp, shexp_match, shexp_valid
 NSAPI Function Reference 155

NSAPI Functions (in Alphabetical Order)
shexp_match()

The shexp_match function compares a specified pre-validated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. The comparison (in contrast to that
of the shexp_casecmp function) is case-sensitive.

The shexp_match function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_valid.

Use this function if you have a shell expression like *.netscape.com and you
want to make sure that a string matches it, such as foo.netscape.com.

Syntax int shexp_match(char *str, char *exp);

Returns 0 if a match was found.

1 if no match was found.

-1 if the comparison resulted in an invalid expression.

Parameters char *str is the string to be compared.

char *exp is the pre-validated shell expression (wildcard pattern) to compare
against.

See also shexp_casecmp, shexp_cmp, shexp_valid

shexp_valid()

The shexp_valid function validates a specified shell expression named by
exp. Use this function to validate a shell expression before using the function
shexp_match to compare the expression with a string.

Syntax int shexp_valid(char *exp);

Returns The constant NON_SXP if exp is a standard string.

The constant INVALID_SXP if exp is a shell expression, but invalid.

The constant VALID_SXP if exp is a valid shell expression.

Parameters char *exp is the shell expression (wildcard pattern) to be validated.

See also shexp_casecmp, shexp_match, shexp_cmp
156 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
STRDUP()

The STRDUP macro is a platform-independent substitute for the C library routine
strdup. It creates a new copy of a string in the request’s memory pool.

The STRDUP routine is functionally equivalent to:

newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

A string created with STRDUP should be disposed with FREE.

Syntax char *STRDUP(char *ptr);

Returns A pointer to the new string.

Parameters char *ptr is a pointer to a string.

Example char *name1 = "MyName";
char *name2 = STRDUP(name1);

See also MALLOC, FREE, CALLOC, REALLOC, PERM_MALLOC, PERM_FREE,
PERM_CALOC, PERM_REALLOC, PERM_STRDUP

system_errmsg()

The system_errmsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an
entry from the global array sys_errlist. Use this macro to help with I/O error
diagnostics.

Syntax char *system_errmsg(int param1);

Returns A string containing the text of the latest error message that resulted from a
system call. Do not FREE this string.

Parameters int param1 is reserved, and should always have the value 0.

See also system_fopenRO, system_fopenRW, system_fopenWA, system_lseek,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose
 NSAPI Function Reference 157

NSAPI Functions (in Alphabetical Order)
system_fclose()

The system_fclose function closes a specified file descriptor. The
system_fclose function must be called for every file descriptor opened by
any of the system_fopen functions.

Syntax int system_fclose(SYS_FILE fd);

Returns 0 if the close succeeded or the constant IO_ERROR if the close failed.

Parameters SYS_FILE fd is the platform-independent file descriptor.

Example SYS_FILE logfd;
system_fclose(logfd);

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_lseek, system_fread, system_fwrite,
system_fwrite_atomic, system_flock, system_ulock

system_flock()

The system_flock function locks the specified file against interference from
other processes. Use system_flock if you do not want other processes using
the file you currently have open. Overusing file locking can cause performance
degradation and possibly lead to deadlocks.

Syntax int system_flock(SYS_FILE fd);

Returns The constant IO_OK if the lock succeeded or the constant IO_ERROR if the lock
failed

Parameters SYS_FILE fd is the platform-independent file descriptor.

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_lseek, system_fread, system_fwrite,
system_fwrite_atomic, system_ulock, system_fclose

system_fopenRO()

The system_fopenRO function opens the file identified by path in read-only
mode and returns a valid file descriptor. Use this function to open files that will
not be modified by your program. In addition, you can use system_fopenRO to
open a new file buffer structure using filebuf_open.
158 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Syntax SYS_FILE system_fopenRO(char *path);

Returns The system-independent file descriptor (SYS_FILE) if the open succeeded or 0
if the open failed

Parameters char *path is the file name.

See also system_errmsg, system_fopenRW, system_fopenWA, system_lseek,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose

system_fopenRW()

The system_fopenRW function opens the file identified by path in read-write
mode and returns a valid file descriptor. If the file already exists,
system_fopenRW does not truncate it. Use this function to open files that will
be read from and written to by your program.

Syntax SYS_FILE system_fopenRW(char *path);

Returns The system-independent file descriptor (SYS_FILE) if the open succeeded or 0
if the open failed.

Parameters char *path is the file name.

Example SYS_FILE fd;
fd = system_fopenRO(pathname);
if (fd == SYS_ERROR_FD)

break;

See also system_errmsg, system_fopenRO, system_fopenWA, system_lseek,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose

system_fopenWA()

The system_fopenWA function opens the file identified by path in write-
append mode and returns a valid file descriptor. Use this function to open
those files that your program will append data to.

Syntax SYS_FILE system_fopenWA(char *path);

Returns The system-independent file descriptor (SYS_FILE) if the open succeeded or 0
if the open failed.
 NSAPI Function Reference 159

NSAPI Functions (in Alphabetical Order)
Parameters char *path is the file name.

See also system_errmsg, system_fopenRO, system_fopenRW, system_lseek,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose

system_fread()

The system_fread function reads a specified number of bytes from a
specified file into a specified buffer. It returns the number of bytes read. Before
system_fread can be used, you must open the file using any of the
system_fopen functions, except system_fopenWA.

Syntax int system_fread(SYS_FILE fd, char *buf, int sz);

Returns The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters
were obtained.

Parameters SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_lseek, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose

system_fwrite()

The system_fwrite function writes a specified number of bytes from a
specified buffer into a specified file.

Before system_fwrite can be used, you must open the file using any of the
system_fopen functions, except system_fopenRO.

Syntax int system_fwrite(SYS_FILE fd, char *buf, int sz);

Returns The constant IO_OK if the write succeeded or the constant IO_ERROR if the
write failed.

Parameters SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.
160 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
int sz is the number of bytes to write to the file.

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_lseek, system_fread, system_fwrite_atomic, system_flock,
system_ulock, system_fclose

system_fwrite_atomic()

The system_fwrite_atomic function writes a specified number of bytes from
a specified buffer into a specified file. The function also locks the file prior to
performing the write, and then unlocks it when done, thereby avoiding
interference between simultaneous write actions. Before
system_fwrite_atomic can be used, you must open the file using any of the
system_fopen functions, except system_fopenRO.

Syntax int system_fwrite_atomic(SYS_FILE fd, char *buf, int sz);

Returns The constant IO_OK if the write/lock succeeded or the constant IO_ERROR if the
write/lock failed.

Parameters SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

Example SYS_FILE logfd;

char *logmsg = "An error occurred.";
system_fwrite_atomic(logfd, logmsg, strlen(logmsg));

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_lseek, system_fread, system_fwrite, system_flock,
system_ulock, system_fclose

system_gmtime()

The system_gmtime function is a thread-safe version of the standard gmtime
function. It returns the current time adjusted to Greenwich Mean Time.

Syntax struct tm *system_gmtime(const time_t *tp, const struct tm
*res);
 NSAPI Function Reference 161

NSAPI Functions (in Alphabetical Order)
Returns A pointer to a calendar time (tm) structure containing the GMT time.
Depending on your system, the pointer may point to the data item represented
by the second parameter, or it may point to a statically-allocated item. For
portability, do not assume either situation.

Parameters time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example time_t tp;
struct tm res, *resp;
tp = time(NULL);
resp = system_gmtime(&tp, &res);

See also system_localtime, util_strftime

system_localtime()

The system_localtime function is a thread-safe version of the standard
localtime function. It returns the current time in the local time zone.

Syntax struct tm *system_localtime(const time_t *tp, const struct tm
*res);

Returns A pointer to a calendar time (tm) structure containing the local time. Depending
on your system, the pointer may point to the data item represented by the
second parameter, or it may point to a statically-allocated item. For portability,
do not assume either situation.

Parameters time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

See also system_gmtime, util_strftime

system_lseek()

The10system_lseek function sets the file position of a file. This affects where
data from system_fread or system_fwrite is read or written.

Syntax int system_lseek(SYS_FILE fd, int offset, int whence);

Returns the offset, in bytes, of the new position from the beginning of the file if the
operation succeeded or -1 if the operation failed.

Parameters SYS_FILE fd is the platform-independent file descriptor.
162 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
int offset is a number of bytes relative to whence. It may be negative.

int whence is a one of the following constants:

SEEK_SET, from the beginning of the file.

SEEK_CUR, from the current file position.

SEEK_END, from the end of the file.

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_ulock, system_fclose

system_rename()

The system_rename function renames a file. It may not work on directories if
the old and new directories are on different file systems.

Syntax int system_rename(char *old, char *new);

Returns 0 if the operation succeeded or -1 if the operation failed.

Parameters char *old is the old name of the file.

char *new is the new name for the file:

system_ulock()

The system_ulock function unlocks the specified file that has been locked by
the function system_lock. For more information about locking, see
system_flock.

Syntax int system_ulock(SYS_FILE fd);

Returns The constant IO_OK if the operation succeeded or the constant IO_ERROR if the
operation failed

Parameters SYS_FILE fd is the platform-independent file descriptor.

See also system_errmsg, system_fopenRO, system_fopenRW, system_fopenWA,
system_fread, system_fwrite, system_fwrite_atomic,
system_flock, system_fclose
 NSAPI Function Reference 163

NSAPI Functions (in Alphabetical Order)
system_unix2local()

The system_unix2local function converts a specified Unix-style pathname to
a local file system pathname. Use this function when you have a file name in
the Unix format (such as one containing forward slashes), and you need to
access a file on another system like Windows NT. You can use
system_unix2local to convert the Unix file name into the format that
Windows NT accepts. In the Unix environment, this function does nothing, but
may be called for portability.

Syntax char *system_unix2local(char *path, char *lp);

Returns A pointer to the local file system path string

Parameters char *path is the Unix-style pathname to be converted.

char *lp is the local pathname.

You must allocate the parameter lp, and it must contain enough space to hold
the local pathname.

See also system_fclose, system_flock, system_fopenRO, system_fopenRW,
system_fopenWA, system_fwrite

systhread_attach()

The systhread_attach function makes an existing thread into a platform-
independent thread.

Syntax SYS_THREAD systhread_attach(void);

Returns A SYS_THREAD pointer to the platform-independent thread.

Parameters none.

See also systhread_current, systhread_getdata, systhread_init,
systhread_newkey, systhread_setdata, systhread_sleep,
systhread_start, systhread_terminate, systhread_timerset

systhread_current()

The systhread_current function returns a pointer to the current thread.

Syntax SYS_THREAD systhread_current(void);
164 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Returns A SYS_THREAD pointer to the current thread

Parameters none.

See also systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep, systhread_start, systhread_terminate,
systhread_timerset

systhread_getdata()

The systhread_getdata function gets data that is associated with a specified
key in the current thread.

Syntax void *systhread_getdata(int key);

Returns A pointer to the data that was earlier used with the systhread_setkey
function from the current thread, using the same value of key if the call
succeeds. Returns NULL if the call did not succeed, for example if the
systhread_setkey function was never called with the specified key during
this session

Parameters int key is the value associated with the stored data by a systhread_setdata
function. Keys are assigned by the systhread_newkey function.

See also systhread_current, systhread_newkey, systhread_setdata,
systhread_sleep, systhread_start, systhread_terminate,
systhread_timerset

systhread_newkey()

The systhread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize
to the current thread; then use the systhread_setdata function to associate a
value with the key.

Syntax int systhread_newkey(void);

Returns An integer key.

Parameters none.

See also systhread_current, systhread_getdata, systhread_setdata,
systhread_sleep, systhread_start, systhread_terminate,
systhread_timerset
 NSAPI Function Reference 165

NSAPI Functions (in Alphabetical Order)
systhread_setdata()

The systhread_setdata function associates data with a specified key
number for the current thread. Keys are assigned by the systhread_newkey
function.

Syntax void systhread_setdata(int key, void *data);

Returns void

Parameters int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value
of key.

See also systhread_current, systhread_getdata, systhread_newkey,
systhread_sleep, systhread_start, systhread_terminate,
systhread_timerset

systhread_sleep()

The systhread_sleep function puts the calling thread to sleep for a given
time.

Syntax void systhread_sleep(int milliseconds);

Returns void

Parameters int milliseconds is the number of milliseconds the thread is to sleep.

See also systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_start, systhread_terminate,
systhread_timerset

systhread_start()

The systhread_start function creates a thread with the given priority,
allocates a stack of a specified number of bytes, and calls a specified function
with a specified argument.

Syntax SYS_THREAD systhread_start(int prio, int stksz,
void (*fn)(void *), void *arg);

Returns A new SYS_THREAD pointer if the call succeeded or the constant
SYS_THREAD_ERROR if the call did not succeed.
166 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Parameters int prio is the priority of the thread. Priorities are system-dependent.

int stksz is the stack size in bytes. If stksz is zero, the function allocates a
default size.

void (*fn)(void *) is the function to call.

void *arg is the argument for the fn function.

See also systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep, systhread_terminate,
systhread_timerset

systhread_timerset()

The systhread_timerset function starts or resets the interrupt timer interval
for a thread system.

Because most systems don’t allow the timer interval to be changed, this should
be considered a suggestion, rather than a command.

Syntax void systhread_timerset(int usec);

Returns void

Parameters int usec is the time, in microseconds

See also systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep,systhread_start,
systhread_terminate

U

util_can_exec()

Unix only The util_can_exec function checks that a specified file can be executed,
returning either a 1 (executable) or a 0. The function checks to see if the file
can be executed by the user with the given user and group ID.

Use this function before executing a program using the exec system call.

Syntax int util_can_exec(struct stat *finfo, uid_t uid, gid_t gid);

Returns 1 if the file is executable or 0 if the file is not executable.
 NSAPI Function Reference 167

NSAPI Functions (in Alphabetical Order)
Parameters stat *finfo is the stat structure associated with a file.

uid_t uid is the Unix user id.

gid_t gid is the Unix group id. Together with uid, this determines the
permissions of the Unix user.

See also util_env_create, util_getline, util_hostname

util_chdir2path()

The util_chdir2path function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more
than one thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker,
because you do not need to use a full paths.

Syntax int util_chdir2path(char *path);

Returns 0 if the directory was changed or -1 if the directory could not be changed.

Parameters char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_chdir2path()

The util_chdir2path function changes the current directory to a specified
directory, where you will access a file.

When running under Windows NT, use a critical section to ensure that more
than one thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker,
because you do not need to use a full paths.

Syntax int util_chdir2path(char *path);

Returns 0 if the directory was changed or -1 if the directory could not be changed.

Parameters char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.
168 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
util_cookie_find()

New in Enterprise Server 4.0.

The util_cookie_find function finds a specific cookie in a cookie string and
returns its value.

Syntax char *util_cookie_find(char *cookie, char *name);

Returns If successful, returns a pointer to the NULL-terminated value of the cookie.
Otherwise, returns NULL. This function modifies the cookie string parameter by
null-terminating the name and value.

Parameters char *cookie is the value of the Cookie: request header.

char *name is the name of the cookie whose value is to be retrieved.

See also util_cookie_next()

util_cookie_next()

New in Enterprise Server 4.0.

The util_cookie_next function can enumerate all the cookie name-value
pairs in a cookie string.

Syntax char *util_cookie_next(char *cookie, char **name, char **value);

Returns If successful, returns a pointer beyond the first name-value pair (so that it can
be used with util_cookie_next() to find the next name-value pair), and
*name and *value point to the NULL-terminated name and value of the first
cookie. If no cookie name-value pair is found, returns NULL. This function
modifies the cookie string parameter by null-terminating the name and value.

Parameters char *cookie is the value of the Cookie request header

char **name points to a pointer to the name on successful execution.

char **value points to a pointer to the value on successful execution.

See also util_cookie_find()
 NSAPI Function Reference 169

NSAPI Functions (in Alphabetical Order)
util_env_find()

The util_env_find function locates the string denoted by a name in a
specified enviroment and returns the associated value. Use this function to find
an entry in an environment.

Syntax char *util_env_find(char **env, char *name);

Returns The value of the environment variable if it is found or NULL if the string was
not found.

Parameters char **env is the environment.

char *name is the name of an environment variable in env.

See also util_env_replace, util_env_str, util_env_free, util_env_create

util_env_free()

The util_env_free function frees a specified environment. Use this function
to deallocate an environment you created using the function
util_env_create.

Syntax void util_env_free(char **env);

Returns void

Parameters char **env is the environment to be freed.

See also util_env_replace, util_env_str, util_env_find, util_env_create

util_env_replace()

The util_env_replace function replaces the occurrence of the variable
denoted by a name in a specified environment with a specified value. Use this
function to change the value of a setting in an environment.

Syntax void util_env_replace(char **env, char *name, char *value);

Returns void

Parameters char **env is the environment.

char *name is the name of a name-value pair.
170 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
char *value is the new value to be stored.

See also util_env_str, util_env_free, util_env_find, util_env_create

util_env_str()

The util_env_str function creates an environment entry and returns it. This
function does not check for non alphanumeric symbols in the name (such as
the equal sign “=”). You can use this function to create a new environment
entry.

Syntax char *util_env_str(char *name, char *value);

Returns A newly-allocated string containing the name-value pair

Parameters char *name is the name of a name-value pair.

char *value is the new value to be stored.

See also util_env_replace, util_env_free, util_env_find, util_env_create

util_getline()

The util_getline function scans the specified file buffer to find a line-feed or
carriage-return/line-feed terminated string. The string is copied into the
specified buffer, and NULL-terminates it. The function returns a value that
indicates whether the operation stored a string in the buffer, encountered an
error, or reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax int util_getline(filebuf *buf, int lineno, int maxlen, char *line);

Returns 0 if successful. line contains the string.

1 if the end of file was reached. line contains the string.

-1 if an error occurred. line contains a description of the error.

Parameters filebuf *buf is the file buffer to be scanned.

int lineno is used to include the line number in the error message when an
error occurs. The caller is responsible for making sure the line number is
accurate.

int maxlen is the maximum number of characters that can be written into l.
 NSAPI Function Reference 171

NSAPI Functions (in Alphabetical Order)
char *l is the buffer in which to store the string. The user is responsible for
allocating and deallocating line.

See also util_can_exec, util_env_create, util_hostname

util_hostname()

The util_hostname function retrieves the local host name and returns it as a
string. If the function cannot find a fully-qualified domain name, it returns
NULL. You may reallocate or free this string. Use this function to determine the
name of the system you are on.

Syntax char *util_hostname(void);

Returns If a fully-qualified domain name was found, returns a string containing that
name otherwise returns NULL if the fully-qualified domain name was not
found.

Parameters none.

util_is_mozilla()

The util_is_mozilla function checks whether a specified user-agent header
string is a Netscape browser of at least a specified revision level, returning a 1 if
it is and 0 otherwise. It uses strings to specify the revision level to avoid
ambiguities like 1.56 > 1.5.

Syntax int util_is_mozilla(char *ua, char *major, char *minor);

Returns 1 if the user-agent is a Netscape browser or 0 if the user-agent is not a Netscape
browser

Parameters char *ua is the user-agent string from the request headers.

char *major is the major release number (to the left of the decimal point).

char *minor is the minor release number (to the right of the decimal point).

See also util_is_url, util_later_than
172 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
util_is_url()

The util_is_url function checks whether a string is a URL, returning 1 if it is
and 0 otherwise. The string is a URL if it begins with alphabetic characters
followed by a colon.

Syntax int util_is_url(char *url);

Returns 1 if the string specified by url is a URL or 0 if the string specified by url is not
a URL.

Parameters char *url is the string to be examined.

See also util_is_mozilla, util_later_than

util_itoa()

The util_itoa function converts a specified integer to a string, and returns
the length of the string. Use this function to create a textual representation of a
number.

Syntax int util_itoa(int i, char *a);

Returns The length of the string created

Parameters int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible
for the allocation and deallocation of a, and it should be at least 32 bytes long.

util_later_than()

The util_later_than function compares the date specified in a time
structure against a date specified in a string. If the date in the string is later than
or equal to the one in the time structure, the function returns 1. Use this
function to handle RFC 822, RFC 850, and ctime formats.

Syntax int util_later_than(struct tm *lms, char *ims);

Returns 1 if the date represented by ims is the same as or later than that represented by
the lms or 0 if the date represented by ims is earlier than that represented by
the lms.

Parameters tm *lms is the time structure containing a date.
 NSAPI Function Reference 173

NSAPI Functions (in Alphabetical Order)
char *ims is the string containing a date.

See also util_strftime

util_sh_escape()

The util_sh_escape function parses a specified string and places a backslash
(\) in front of any shell-special characters, returning the resultant string. Use
this function to ensure that strings from clients won’t cause a shell to do
anything unexpected.

The shell-special characters are: &;‘’\"|*?~<>^()[]{}$\\ #!

Syntax char *util_sh_escape(char *s);

Returns A newly allocated string

Parameters char *s is the string to be parsed.

See also util_uri_escape

util_snprintf()

The util_snprintf function formats a specified string, using a specified
format, into a specified buffer using the printf-style syntax and performs
bounds checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax int util_snprintf(char *s, int n, char *fmt, ...);

Returns The number of characters formatted into the buffer.

Parameters char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings; it
does not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

See also util_sprintf, util_vsnprintf, util_vsprintf
174 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
util_sprintf()

The util_sprintf function formats a specified string, using a specified
format, into a specified buffer using the printf-style syntax without bounds
checking. It returns the number of characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function
only if you are certain that the string fits the buffer. Otherwise, use the function
util_snprintf. For more information, see the documentation on the printf
function for the run-time library of your compiler.

Syntax int util_sprintf(char *s, char *fmt, ...);

Returns The number of characters formatted into the buffer.

Parameters char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings; it
does not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

Example char *logmsg;
int len;

logmsg = (char *) MALLOC(256);
len = util_sprintf(logmsg, "%s %s %s\n", ip, method, uri);

See also util_snprintf, util_vsnprintf, util_vsprintf

util_strcasecmp()

The util_strcasecmp function performs a comparison of two alpha-numeric
strings and returns a -1, 0, or 1 to signal which is larger or that they are
identical.

The comparison is not case-sensitive.

Syntax int util_strcasecmp(const char *s1, const char *s2);

Returns 1 if s1 is greater than s2.

0 if s1 is equal to s2.

-1 if s1 is less than s2.

Parameters char *s1 is the first string.
 NSAPI Function Reference 175

NSAPI Functions (in Alphabetical Order)
char *s2 is the second string.

See also util_strncasecmp

util_strftime()

The util_strftime function translates a tm structure, which is a structure
describing a system time, into a textual representation. It is a thread-safe
version of the standard strftime function

Syntax int util_strftime(char *s, const char *format, const struct tm
*t);

Returns The number of characters placed into s, not counting the terminating NULL
character.

Parameters char *s is the string buffer to put the text into. There is no bounds checking,
so you must make sure that your buffer is large enough for the text of the date.

const char *format is a format string, a bit like a printf string in that it
consists of text with certain %x substrings. You may use the constant
HTTP_DATE_FMT to create date strings in the standard internet format. For
more information, see the documentation on the printf function for the run-
time library of your compiler. Refer to Appendix E, “Time Formats,” for details
on time formats.

const struct tm *t is a pointer to a calendar time (tm) struct, usually created
by the function system_localtime or system_gmtime.

See also system_localtime, system_gmtime

util_strncasecmp()

The util_strncasecmp function performs a comparison of the first n
characters in the alpha-numeric strings and returns a -1, 0, or 1 to signal which
is larger or that they are identical.

The function’s comparison is not case-sensitive.

Syntax int util_strncasecmp(const char *s1, const char *s2, int n);

Returns 1 if s1 is greater than s2.

0 if s1 is equal to s2.

-1 if s1 is less than s2.
176 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Parameters char *s1 is the first string.

char *s2 is the second string.

int n is the number of initial characters to compare.

See also util_strcasecmp

util_uri_escape()

The util_uri_escape function converts any special characters in the URI into
the URI format (%XX where XX is the hexadecimal equivalent of the ASCII
character), and returns the escaped string. The special characters are
%?#:+&*"<>, space, carriage-return, and line-feed.

Use util_uri_escape before sending a URI back to the client.

Syntax char *util_uri_escape(char *d, char *s);

Returns The string (possibly newly allocated) with escaped characters replaced.

Parameters char *d is a string. If d is not NULL, the function copies the formatted string
into d and returns it. If d is NULL, the function allocates a properly-sized string
and copies the formatted special characters into the new string, then returns it.

The util_uri_escape function does not check bounds for the parameter d.
Therefore, if d is not NULL, it should be at least three times as large as the string
s.

char *s is the string containing the original unescaped URI.

See also util_uri_is_evil, util_uri_parse, util_uri_unescape

util_uri_is_evil()

The util_uri_is_evil function checks a specified URI for insecure path
characters. Insecure path characters include //, /./, /../ and/., /.. (also for
NT./) at the end of the URI. Use this function to see if a URI requested by the
client is insecure.

Syntax int util_uri_is_evil(char *t);

Returns 1 if the URI is insecure or 0 if the URI is OK.

Parameters char *t is the URI to be checked.
 NSAPI Function Reference 177

NSAPI Functions (in Alphabetical Order)
See also util_uri_escape, util_uri_parse

util_uri_parse()

The util_uri_parse function converts //, /./, and /*/../ into / in the
specified URI (where * is any character other than /). You can use this function
to convert a URI’s bad sequences into valid ones. First use the function
util_uri_is_evil to determine whether the function has a bad sequence.

Syntax void util_uri_parse(char *uri);

Returns void

Parameters char *uri is the URI to be converted.

See also util_uri_is_evil, util_uri_unescape

util_uri_unescape()

The util_uri_unescape function converts the encoded characters of a URI
into their ASCII equivalents. Encoded characters appear as %XX where XX is a
hexadecimal equivalent of the character.

Syntax void util_uri_unescape(char *uri);

Returns void

Parameters char *uri is the URI to be converted.

See also util_uri_escape, util_uri_is_evil, util_uri_parse

util_vsnprintf()

The util_vsnprintf function formats a specified string, using a specified
format, into a specified buffer using the vprintf-style syntax and performs
bounds checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax int util_vsnprintf(char *s, int n, register char *fmt, va_list
args);

Returns The number of characters formatted into the buffer
178 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Functions (in Alphabetical Order)
Parameters char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and
%s strings; it does not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to
va_start.

See also util_sprintf, util_vsprintf

util_vsprintf()

The util_vsprintf function formats a specified string, using a specified
format, into a specified buffer using the vprintf-style syntax without bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax int util_vsprintf(char *s, register char *fmt, va_list args);

Returns The number of characters formatted into the buffer.

Parameters char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only %d and
%s strings; it does not handle any width or precision strings.

va_list args is an STD argument variable obtained from a previous call to
va_start.

See also util_snprintf, util_vsnprintf
 NSAPI Function Reference 179

NSAPI Functions (in Alphabetical Order)
180 NSAPI Programmer’s Guide for Enterprise Server 4.0

C h a p t e r

6
Examples of Custom SAFsS
This chapter discusses examples of custom Sever Application Functions (SAFs)
for each directive in the request-response process. You may wish to use these
examples as the basis for implementing your own custom SAFs. For more
information about creating your own custom SAFs, see Chapter 4, “Creating
Custom SAFs.”.

Before writing custom SAFs, you should be familiar with the request-response
process, (discussed in Chapter 1, “Basics of Enterprise Server Operation,”) and
the role of the configuration file obj.conf (discussed in Chapter 2, “Syntax
and Use of Obj.conf.”)

Before writing your own SAF, check if an existing SAF serves your purpose.
The pre-defined SAFs are discussed in Chapter 3, “Predefined SAFS for Each
Stage in the Request Handling Process.”

For a list of the NSAPI functions for creating new SAFs, see Chapter 5, “NSAPI
Function Reference.”

This chapter has the following sections:

• Examples in the Build

• AuthTrans Example

• NameTrans Example

• PathCheck Example

• ObjectType Example

• Service Example
Chapter 6, Examples of Custom SAFsS 181

Examples in the Build
• AddLog Example

Examples in the Build
The nsapi/examples/ or plugins/nsapi/examples subdirectory within the
server installation directory contains examples of source code for SAFs.

You can use the example.mak makefile in the same directory to compile the
examples and create a library containing the functions in all the example files.

To test an example, load the examples shared library into the Enterprise Server
by adding the following directive in the Init section of obj.conf:

Init fn=load-modules shlib=examples.so/dll
funcs=function1,function2,function3

The funcs parameter specifies the functions to load from the shared library.

If the example uses an initialization function, be sure to specify the initialization
function in the funcs argument to load-modules, and also add an Init
directive to call the initialization function.

For example, the PathCheck example implements the restrict-by-acf
function, which is initialized by the acf-init function. The following directive
loads both these functions:

Init fn=load-modules yourlibrary funcs=acf-init,restrict-by-acf

The following directive calls the acf-init function during server initialization:

Init fn=acf-init file=extra-arg

To invoke the new SAF at the appropriate step in the response handling
process, add an appropriate directive in the object to which it applies, for
example:

PathCheck fn=restrict-by-acf

After modifying obj.conf manually, you’ll need to load the configuration files
in the Server Manager interface if it is open. If it is not open, you’ll need to stop
and start the server to have your changes take effect, since the server loads
obj.conf during initialization.
182 NSAPI Programmer’s Guide for Enterprise Server 4.0

AuthTrans Example
After adding new Init directives to obj.conf, you always need to restart the
Enterprise Server to load the changes, since Init directives are only applied
during server initialization.

AuthTrans Example
This simple example of an AuthTrans function demonstrate how to use your
own custom ways of verifying that the username and password that a remote
client provided is accurate. This program uses a hard coded table of usernames
and passwords and checks a given user’s password against the one in the static
data array. The userdb parameter is not used in this function.

AuthTrans directives work in conjunction with PathCheck directives.
Generally, an AuthTrans function checks if the username and password
associated with the request are acceptable, but it does not allow or deny access
to the request -- it leaves that to a PathCheck function.

AuthTrans functions get the username and password from the headers
associated with the request. When a client initially makes a request, the
username and password are unknown so the AuthTrans function and
PathCheck function work together to reject the request, since they can’t
validate the username and password. When the client receives the rejection, the
usual response is for it to pop up a dialog box asking the user for their
username and password, and then the client submits the request again, this
time including the username and password in the headers.

In this example, the hardcoded-auth function, which is invoked during the
AuthTrans step, checks if the username and password correspond to an entry
in the hardcoded table of users and passwords.

Installing the Example

To install the function on the Enterprise Server, add the following Init
directive at the beginning of obj.conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=hardcoded-auth

Inside the default object in obj.conf add the following AuthTrans directive:

AuthTrans fn=basic-auth auth-type="basic" userfn=hardcoded-auth
 Examples of Custom SAFsS 183

AuthTrans Example
userdb=unused

Note that this function does not actually enforce authorization requirements, it
only takes given information and tells the server if it’s correct or not. The
PathCheck function require-auth performs the enforcement, so add the
following PathCheck directive also:

PathCheck fn=require-auth realm="test realm" auth-type="basic"

Source Code

The source code for this example is in the auth.c file in the nsapi/examples/
or plugins/nsapi/examples subdirectory of the server root directory.

#include nsapi.h

typedef struct {
char *name;
char *pw;

} user_s;

/* This is the array of users and passwords */

static user_s user_set[] = {
{"nikki", "bones"},
{"boots", "frisbee"},
{"jack", "steak"},
{"topper", "kibble"},
{"beulah", "rollover"},
{NULL, NULL}

};

#include "frame/log.h"

#ifdef __cplusplus
extern "C"
#endif

/* hardcoded_auth is our custom SAF */

NSAPI_PUBLIC int hardcoded_auth(pblock *param, Session *sn, Request *rq)
{

/* Parameters given to us by auth-basic.
* Use pblock_findval to find the value of a specific parameter.
*/

/* pwfile will be null, but that’s OK because we don’t use it */
char *pwfile = pblock_findval("userdb", param);
184 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Example
/* Get the user and password */
char *user = pblock_findval("user", param);
char *pw = pblock_findval("pw", param);

/* Temp variables */
register int x;

/* Iterate over the hardcoded array of users and passwords
* to see if the current user is in there.
*/
for(x = 0; user_set[x].name != NULL; ++x) {

/* If this isn’t the user we want, keep going */
if(strcmp(user, user_set[x].name) != 0)
continue;

/* If this is the user we want, verify password.
* If password is wrong, log an error and return REQ_NOACTION.
*/
if(strcmp(pw, user_set[x].pw)) {

log_error(LOG_SECURITY, "hardcoded-auth", sn, rq,
"user %s entered wrong password", user);

return REQ_NOACTION;
}

/* If username and password are vaild, return REQ_PROCEED */
return REQ_PROCEED;

}

/* If the username was not found in our array, log an error
* and return REQ_NOACTION.
*/

log_error(LOG_SECURITY, "hardcoded-auth", sn, rq,
"unknown user %s", user);

 return REQ_NOACTION;

}

NameTrans Example
The ntrans.c file in the nsapi/examples/ or plugins/nsapi/examples
subdirectory of the server root directory contains source code for two example
NameTrans functions:

• explicit_pathinfo

This example allows the use of explicit extra path information in a URL.
 Examples of Custom SAFsS 185

NameTrans Example
• https_redirect

This example redirects the URL if the client is a particular version of
Netscape Navigator.

This section discusses the first example. Look at the source code in ntrans.c
for the second example.

Note: The main thing that a NameTrans function usually does is to convert the
logical URL in ppath in rq->vars to a physical pathname. However, the
example discussed here, explicit_pathinfo , does not translate the URL into
a physical pathname, it changes the value of the requested URL. See the second
example, https_redirect , in ntrans.c for an example of a NameTrans
function that converts the value of ppath in rq->vars from a URL to a physical
pathname.

The explicit_pathinfo example allows URLs to explicitly include extra path
information for use by a CGI program. The extra path information is delimited
from the main URL by a specified separator, such as a comma.

For example:

http://server-name/cgi/marketing,/jan/releases/hardware

In this case, the URL of the requested resource (which would be a CGI
program) is http:// server-name/cgi/marketing and the extra path
information to give to the CGI program is /jan/releases/hardware .

When choosing a separator, be sure to pick a character that will never be used
as part of the real URL.

The explicit_pathinfo function reads the URL, strips out everything
following the comma and puts it in the path-info field of the vars field in the
request object (rq->vars). CGI programs can access this information through
the PATH_INFO environment variable.

One side effect of explicit_pathinfo is that the SCRIPT_NAME CGI
environment variable has the separator character tacked on the end.

Normally NameTrans directives return REQ_PROCEED when they change the
path so that the server does not process any more NameTrans directives.
However, in this case we want name translation to continue after we have
extracted the path info, since we have not yet translated the URL to a physical
pathname.
186 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Example
Installing the Example

To install the function on the Enterprise Server, add the following Init
directive at the beginning of obj.conf to load the compiled function:

Init fn=load-modules shlib=yourlibrary funcs=explicit-pathinfo

Inside the default object in obj.conf add the following NameTrans directive:

NameTrans fn=explicit-pathinfo separator=","

This NameTrans directive should appear before other NameTrans directives in
the default object.

Source Code

This example is in the ntrans.c file in the nsapi/examples/ or plugins/
nsapi/examples subdirectory of the server root directory.

#include nsapi.h

#include <string.h> /* strchr */
#include "frame/log.h" /* log_error */

#ifdef __cplusplus
extern "C"
#endif

/* explicit-pathinfo is our new NameTrans SAF */

NSAPI_PUBLIC int explicit_pathinfo(pblock *pb, Session *sn, Request *rq)
{

/* The separator parameter is specified in the directive line
* in obj.conf that invokes this function.
* The separator separates the URL of the requested resource
* from the extra path information to put into PATH_INFO
*/

char *sep = pblock_findval("separator", pb);

/* Get the ppath from the vars field of the request object*/
char *ppath = pblock_findval("ppath", rq->vars);

/* Temp var */
char *t;

/* Verify correct usage */
if(!sep) {

log_error(LOG_MISCONFIG, "explicit-pathinfo", sn, rq,
 Examples of Custom SAFsS 187

PathCheck Example
"missing parameter (need root)");
/* When we abort, the default status code is 500 Server Error *
return REQ_ABORTED;

}

/* Check for separator. If not there, don’t do anything */
t = strchr(ppath, sep[0]);
if(!t)

return REQ_NOACTION;

/* If path contains separator, truncate path at the separator */
*t++ = ’\0’;

/* Put the extra path info into the path-info field of rq->vars*/
pblock_nvinsert("path-info", t, rq->vars);

/* Normally NameTrans functions return REQ_PROCEED when they change
* the path. However, we want name translation to continue after we
* have extracted the extra path info since we haven’t translated the
* URL to a physical file name yet.
*/
return REQ_NOACTION;

}

PathCheck Example
The example in this section demonstrates how to implement a custom SAF for
performing path checks. This example simply checks if the requesting host is
on a list of allowed hosts.

The Init function acf-init loads a file containing a list of allowable IP
addresses with one IP address per line. The PathCheck function
restrict_by_acf gets the IP address of the host that is making the request and
checks if it is on the list. If the host is on the list, it is allowed access otherwise
access is denied.

For simplicity, the stdio library is used to scan the IP addresses from the file.

Installing the Example

To load the shared object containing your functions add the following line in
the Init section of the obj.conf file:

Init fn=load-modules yourlibrary funcs=acf-init,restrict-by-acf
188 NSAPI Programmer’s Guide for Enterprise Server 4.0

PathCheck Example
To call acf-init to read the list of allowable hosts, add the following line to
the Init section in obj.conf. (This line must come after the one that loads the
library containing acf-init).

Init fn=acf-init file=fileContainingHostsList

To execute your custom SAF during the request-response process for some
object, add the following line to that object in the obj.conf file:

PathCheck fn=restrict-by-acf

Source Code

The source code for this example is in pcheck.c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

#include nsapi.h

/* Set hosts to NULL to prevent problems if acf-init is not called */
static char **hosts = NULL;

#include <stdio.h>
#include "base/daemon.h"
#include "base/util.h" /* util_sprintf */
#include "frame/log.h" /* log_error */
#include "frame/protocol.h" /* protocol_status */

/* The longest line we’ll allow in an access control file */
#define MAX_ACF_LINE 256

#ifdef __cplusplus
extern "C"
#endif

/* Used to free static array on restart */
NSAPI_PUBLIC void acf_free(void *unused)
{

register int x;
for(x = 0; hosts[x]; ++x)

FREE(hosts[x]);
FREE(hosts);
hosts = NULL;

}

/* This is the initialization function that gets invoked
* during the Init stage in obj.conf.
* This function opens the custom file and reads the IP addresses
* of the allowed hosts into the global variable hosts.
*/
 Examples of Custom SAFsS 189

PathCheck Example
NSAPI_PUBLIC int acf_init(pblock *pb, Session *sn, Request *rq)
{

/* The file parameter is specified in the PathCheck directive
* that invokes this function.
*/
char *acf_file = pblock_findval("file", pb);

/* Working variables */
int num_hosts;
FILE *f;
char err[MAGNUS_ERROR_LEN];
char buf[MAX_ACF_LINE];

/* Check usage. Note: Init functions have special error logging */
if(!acf_file) {

util_sprintf(err, "missing parameter to acf_init (need file)");
pblock_nvinsert("error", err, pb);
return REQ_ABORTED;

}

/* Open the file containing the list of allowed hosts */
f = fopen(acf_file, "r");

/* Did we open it? */
if(!f) {

util_sprintf(err, "can’t open access control file %s (%s)",
acf_file, system_errmsg());
pblock_nvinsert("error", err, pb);
return REQ_ABORTED;

}

/* Initialize hosts array */
num_hosts = 0;
hosts = (char **) MALLOC(1 * sizeof(char *));
hosts[0] = NULL;

while(fgets(buf, MAX_ACF_LINE, f)) {
/* Blast linefeed that stdio helpfully leaves on there *

buf[strlen(buf) - 1] = ’\0’;
hosts = (char **) REALLOC(hosts, (num_hosts + 2) * sizeof(char *));
hosts[num_hosts++] = STRDUP(buf);
hosts[num_hosts] = NULL;

}

/* Close the file */
fclose(f);

/* At restart, free hosts array */
daemon_atrestart(acf_free, NULL);

return REQ_PROCEED;

}

/* restrict_by_acf is the new PathCheck SAF.
190 NSAPI Programmer’s Guide for Enterprise Server 4.0

ObjectType Example
* It checks if the requesting host is in the list of allowed hosts.
* The list of hosts is in the hosts[] array which was set up by
* acf-init during server initialization.
*/
NSAPI_PUBLIC int restrict_by_acf(pblock *pb, Session *sn, Request *rq)
{

/* No need to get any parameters from the directive in obj.conf. */

/* Working variables */
/* Get the client’s ip address */
char *remip = pblock_findval("ip", sn->client);
register int x;

/* If the hosts variable is not set, it means acf-init was not called
* so log an error and return REQ_ABORTED
if(!hosts) {

log_error(LOG_MISCONFIG, "restrict-by-acf", sn, rq,
"restrict-by-acf called without call to acf-init");
/* The default abort status code is 500 Server Error */

return REQ_ABORTED;
}

/* if hosts is defined, iterate through the hosts list to see
* if the host that sent the request is allowed access.
* If the host is on the list, all is well, so return REQ_NOACTION.
*/
for(x = 0; hosts[x] != NULL; ++x) {

if(!strcmp(remip, hosts[x]))
return REQ_NOACTION;

}

/* If the requesting host is not on the list, access is denied */
/* Set response code to forbidden and return an error. *
protocol_status(sn, rq, PROTOCOL_FORBIDDEN, NULL);
return REQ_ABORTED;

}

ObjectType Example
The example in this section demonstrates how to implement html2shtml, a
custom SAF that instructs the server to treat a .html files as a .shtml files if a
.shtml version of the requested file exists.

A well-behaved ObjectType function checks if the content type is already set,
and if so, does nothing except return REQ_NOACTION.

if(pblock_findval("content-type", rq->srvhdrs))
return REQ_NOACTION;
 Examples of Custom SAFsS 191

ObjectType Example
The main thing an ObjectType directive needs to do is to set the content type
(if it is not already set). This example sets it to magnus-internal/parsed-
html in the following lines:

/* Set the content-type to magnus-internal/parsed-html */
pblock_nvinsert("content-type", "magnus-internal/parsed-html",

rq->srvhdrs);

The html2shtml function looks at the requested file name. If it ends with
.html, the function looks for a file with the same base name, but with the
extension .shtml instead. If it finds one, it uses that path and informs the
server that the file is parsed HTML instead of regular HTML. Note that this
requires an extra stat call for every HTML file accessed.

Installing the Example

To load the shared object containing your function, add the following line in
the Init section of the obj.conf file :

Init fn=load-modules shlib=yourlibrary funcs=html2shtml

To execute the custom SAF during the request-response process for some
object, add the following line to that object in the obj.conf file:

ObjectType fn=html2shtml

Source Code

The source code for this example is in otype.c in the nsapi/examples/ or
plugins/nsapi/examples subdirectory within the server root directory.

include nsapi.h

#include <string.h> /* strncpy */
#include "base/util.h"

#ifdef __cplusplus
extern "C"
#endif

/* This is the custom SAF. Whenever a request is made for an
* html file, this SAF checks if another file with the same base name
* but with a .shtml extension exists. If it does, it sets the
* type to magnus-internal/parsed-html.
*/
192 NSAPI Programmer’s Guide for Enterprise Server 4.0

ObjectType Example
NSAPI_PUBLIC int html2shtml(pblock *pb, Session *sn, Request *rq)

{
/* No need to get any parameters from the directive in obj.conf. */

/* Work variables */
/* Get the path from the request object */

pb_param *path = pblock_find("path", rq->vars);
struct stat finfo;
char *npath;
int baselen;

/* This is a nicely behaved ObjectType function, so obey the rules
* and if the type has already been set, don’t do anything.
*/
if(pblock_findval("content-type", rq->srvhdrs))

return REQ_NOACTION;

/* If path does not end in .html, don’t do anything */
baselen = strlen(path->value) - 5;
if(strcasecmp(&path->value[baselen], ".html") != 0)

return REQ_NOACTION;

/* If we got this far, the file ends in .html */

/* Add 1 character to make room to convert html to shtml */
npath = (char *) MALLOC((baselen + 5) + 1 + 1);
strncpy(npath, path->value, baselen);
strcpy(&npath[baselen], ".shtml");

/* If the .shtml version of the file does not exist,
* don't do anything */

if(stat(npath, &finfo) == -1) {
FREE(npath);
return REQ_NOACTION;

}

/* If the .shtml version of the file does exist, change the pathname
* of the requested file to the .shtml version
*/
FREE(path->value);
path->value = npath;

/* The server caches the stat() of the current path. Update it. *
(void) request_stat_path(NULL, rq);

/* Set the content-type to magnus-internal/parsed-html */
pblock_nvinsert("content-type", "magnus-internal/parsed-html",

rq->srvhdrs);

/* We have successfully set the type, so return REQ_PROCEED */

return REQ_PROCEED;
 Examples of Custom SAFsS 193

Service Example
}

Service Example
This section discusses a very simple Service function called
simple_service. All this function does is send a message in response to a
client request. The message is initialized by the init_simple_service
function during server initialization.

For a more complex example, see the file service.c in the examples
directory, which is discussed in "More Complex Service Example."

Installing the Example

To load the shared object containing your functions add the following line in
the Init section of the obj.conf file:

Init fn=load-modules shlib=yourlibrary funcs=simple-service-
init,simple-service

To call the simple-service-init function to initialize the message
representing the generated output, add the following line to the Init section in
obj.conf. (This line must come after the one that loads the library containing
simple-service-init).

Init fn=simple-service-init
generated-output="<H1>Generated output msg</H1>

To execute the custom SAF during the request-response process for some
object, add the following line to that object in the obj.conf file:

Service type="text/html" fn=simple-service

The type="text/html" argument indicates that this function is invoked during
the Service stage only if the content-type has been set to "text/html".

Source Code
#include <nsapi.h>

static char *simple_msg = "default customized content";
194 NSAPI Programmer’s Guide for Enterprise Server 4.0

Service Example
/* This is the initialization function.
* It gets the value of the generated-output parameter
* specified in the Init directive in obj.conf

*/
NSAPI_PUBLIC int init-simple-service(pblock *pb, Session *sn,
Request *rq)
{

/* Get the message from the parameter in the directive in obj.conf */
simple_msg = pblock_findval("generated-output", pb);
return REQ_PROCEED;

}

/* This is the customized Service SAF.
* It sends the "generated-output" message to the client.

*/
NSAPI_PUBLIC int simple-service(pblock *pb, Session *sn, Request *rq)
{

int return_value;
char msg_length[8];

/* Use the protocol_status function to set the status of the
* response before calling protocol_start_response.
*/
protocol_status(sn, rq, PROTOCOL_OK, NULL);

/* Although we would expect the ObjectType stage to
* set the content-type, set it here just to be
* completely sure that it gets set to text/html.
*/
param_free(pblock_remove("content-type", rq->srvhdrs));
pblock_nvinsert("content-type", "text/html", rq->srvhdrs);

/* If you want to use keepalive, need to set content-length header.
* The util_itoa function converts a specified integer to a string,
* and returns the length of the string. Use this
* function to create a textual representation of a number.
*/

util_itoa(strlen(simple_msg), msg_length);
pblock_nvinsert("content-length", msg_length, rq->srvhdrs);

/* Send the headers to the client*/
return_value = protocol_start_response(sn, rq);
if (return_value == REQ_NOACTION) {

/* HTTP HEAD instead of GET */
return REQ_PROCEED;

}

/* Write the output using net_write*/
return_value = net_write(sn->csd, simple_msg, strlen(simple_msg));
if (return_value == IO_ERROR) {

return REQ_EXIT;
 Examples of Custom SAFsS 195

AddLog Example
}

return REQ_PROCEED;

}

More Complex Service Example

The send-images function is a custom SAF which replaces the doit.cgi
demonstration available on the Netscape home pages. When a file is accessed
as /dir1/dir2/something.picgroup, the send-images function checks if
the file is being accessed by a Mozilla/1.1 browser. If not, it sends a short
error message. The file something.picgroup contains a list of lines, each of
which specifies a filename followed by a content-type (for example, one.gif
image/gif).

To load the shared object containing your function, add the following line at
the beginning of the obj.conf file:

Init fn=load-modules shlib=yourlibrary funcs=send-images

Also, add the following line to the mime.types file:

type=magnus-internal/picgroup exts=picgroup

To execute the custom SAF during the request-response process for some
object, add the following line to that object in the obj.conf file (send-images
takes an optional parameter, delay, which is not used for this example):

Service method=(GET|HEAD) type=magnus-internal/picgroup fn=send-images

The source code is in service.c in the nsapi/examples/ or plugins/
nsapi/examples subdirectory within the server root directory.

AddLog Example
The example in this section demonstrates how to implement brief-log, a
custom SAF for logging only three items of information about a request: the IP
address, the method, and the URI (for example, 198.93.95.99 GET /
jocelyn/dogs/homesneeded.html).
196 NSAPI Programmer’s Guide for Enterprise Server 4.0

AddLog Example
Installing the Example

To load the shared object containing your functions add the following line in
the Init section of the obj.conf file:
Init fn=load-modules shlib=yourlibrary funcs=brief-init,brief-log

To call brief-init to open the log file, add the following line to the Init
section in obj.conf. (This line must come after the one that loads the library
containing brief-init).

Init fn=brief-init file=/tmp/brief.log

To execute your custom SAF during the AddLog stage for some object, add the
following line to that object in the obj.conf file:

AddLog fn=brief-log

Source Code

The source code is in addlog.c is in the nsapi/examples/ or plugins/
nsapi/examples subdirectory within the server root directory.

#include nsapi.h

#include "base/daemon.h" /* daemon_atrestart */
#include "base/file.h" /* system_fopenWA, system_fclose */
#include "base/util.h" /* sprintf */

/* File descriptor to be shared between the processes */
static SYS_FILE logfd = SYS_ERROR_FD;

#ifdef __cplusplus
extern "C"
#endif

/* brief_terminate closes the log file when the server is restarted */
NSAPI_PUBLIC void brief_terminate(void *parameter)
{

system_fclose(logfd);
logfd = SYS_ERROR_FD;

}

/* brief-init opens the log file when the server is initialized */
NSAPI_PUBLIC int brief_init(pblock *pb, Session *sn, Request *rq)
{

/* Get the file parameter from the directive in obj.conf that
* invokes this function.
*/
 Examples of Custom SAFsS 197

AddLog Example
char *fn = pblock_findval("file", pb);

/* If no file name is given, abort the process */
if(!fn) {

pblock_nvinsert("error", "brief-init: needs a file name",pb);
return REQ_ABORTED;

}

/* Open the log file */
logfd = system_fopenWA(fn);

/* If a sys error occurs, abort the process */
if(logfd == SYS_ERROR_FD) {

pblock_nvinsert("error", "brief-init: needs a file name", pb);
return REQ_ABORTED;

}

 /* Close log file when server is restarted *
daemon_atrestart(brief_terminate, NULL);

return REQ_PROCEED;
}

NSAPI_PUBLIC int brief_log(pblock *pb, Session *sn, Request *rq)
{

 /* No need to get parameters from the directive in obj.conf */

/* Get the method, uri, and ip from the request object */
char *method = pblock_findval("method", rq->reqpb);
char *uri = pblock_findval("uri", rq->reqpb);
char *ip = pblock_findval("ip", sn->client);

/* Create the log message string */
char *logmsg;
int len;

/* Put the ip, method, and uri in the log message */
logmsg = (char *) MALLOC(strlen(ip) + 1 + strlen(method) + 1 +

strlen(uri) + 1 + 1);

len = util_sprintf(logmsg, "%s %s %s\n", ip, method, uri);

/* Write the log message to the log file.
* The atomic version uses locking to prevent interference
*/
system_fwrite_atomic(logfd, logmsg, len);

/* free the log message string */
FREE(logmsg);

/* Log entry has been successfully written so proceed */
return REQ_PROCEED;

}

198 NSAPI Programmer’s Guide for Enterprise Server 4.0

AddLog Example
 Examples of Custom SAFsS 199

AddLog Example
200 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

A
Appendix A Data Structure Reference
NSAPI uses many data structures which are defined in the nsapi.h header file,
which is in the directory server-root/include in Enterprise 3.x and in
server-root/plugins/include in Enterprise Server 4.0.

The NSAPI functions described in Chapter 5, “NSAPI Function Reference,”
provide access to most of the data structures and data fields. Before directly
accessing a data structure in naspi.h, check if an accessor function exists for
it.

For information about the privatizaton of some data structures in Enterprise
Server 4.0, see:

• Privatization of Some Data Structures

The rest of this chapter describes ome of the frequently used public data
structures in nsapi.h for your convenience. Note that only the most
commonly used fields are documented here for each data structure; for
complete details look in nsapi.h.
• session

• pblock

• pb_entry

• pb_param

• Session->client

• request

• stat

• shmem_s
Appendix A, Data Structure Reference 201

Privatization of Some Data Structures
• cinfo

Privatization of Some Data Structures
In Enterprise Server 4.0, some data structures have been moved from nsapi.h
to nsapi_pvt.h . The data structures in nsapi_pvt.h are now considered to
be private data structures, and you should not write code that accesses them
directly. Instead, use accessor functions. We expect that very few people have
written plugins that access these data structures directly, so this change should
have very little impact on existing customer-defined plugins. Look in
nsapi_pvt.h to see which data structures have been removed from the public
domain and to see the accessor functions you can use to access them from now
on.

Plugins written for Enterprise Server 3.x that access contents of data structures
defined in nsapi_pvt.h will not be source compatible with ES 4.0, that is, it
will be necessary to #include "nsapi_pvt.h" in order to build such plugins
from source. There is also a small chance that these programs will not be
binary compatible with Enteprise Server 4.0, because some of the data
structures in nsapi_pvt.h have changed size. In particular, the directive
structure is larger, which means that a plugin that indexes through the
directives in a dtable will not work without being rebuilt (with nsapi_pvt.h
included).

We hope that the majority of plugins do not reference the internals of data
structures in nsapi_pvt.h , and therefore that most existing NSAPI plugins will
be both binary and source compatible with Enterprise Server 4.0.

session
A session is the time between the opening and closing of the connection
between the client and the server. The Session data structure holds variables
that apply session wide, regardless of the requests being sent, as shown here:

typedef struct {
/* Information about the remote client */

pblock *client;

/* The socket descriptor to the remote client */
202 NSAPI Programmer’s Guide for Enterprise Server 4.0

pblock
SYS_NETFD csd;

/* The input buffer for that socket descriptor */
netbuf *inbuf;

/* Raw socket information about the remote */
/* client (for internal use) */
struct in_addr iaddr;

} Session;

pblock
The parameter block is the hash table that holds pb_entry structures. Its
contents are transparent to most code. This data structure is frequently used in
NSAPI; it provides the basic mechanism for packaging up parameters and
values. There are many functions for creating and managing parameter blocks,
and for extracting, adding, and deleting entries. See the functions whose names
start with pblock_ in Chapter 5, “NSAPI Function Reference.” You should not
need to write code that access pblock data fields directly.

typedef struct {
int hsize;
struct pb_entry **ht;

} pblock;

pb_entry
The pb_entry is a single element in the parameter block.

struct pb_entry {
pb_param *param;
struct pb_entry *next;

};

pb_param
The pb_param represents a name-value pair, as stored in a pb_entry.

typedef struct {
 Data Structure Reference 203

Session->client
char *name,*value;
} pb_param;

Session->client
The Session->client parameter block structure contains two entries:

• The ip entry is the IP address of the client machine.

• The dns entry is the DNS name of the remote machine. This member must
be accessed through the session_dns function call:

/*
* session_dns returns the DNS host name of the client for this
* session and inserts it into the client pblock. Returns NULL if
* unavailable.
*/

char *session_dns(Session *sn);

request
Under HTTP protocol, there is only one request per session. The Request
structure contains the variables that apply to the request in that session (for
example, the variables include the client’s HTTP headers).

typedef struct {
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *reqpb;

/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd_objset *os;
204 NSAPI Programmer’s Guide for Enterprise Server 4.0

stat
/* The stat last returned by request_stat_path */
char *statpath;
struct stat *finfo;

} Request;

stat
When a program calls the stat() function for a given file, the system returns
a structure that provides information about the file. The specific details of the
structure should be obtained from your platform’s implementation, but the
basic outline of the structure is as follows:

struct stat {
dev_t st_dev; /* device of inode */
inot_t st_ino; /* inode number */
short st_mode; /* mode bits */
short st_nlink; /* number of links to file /*
short st_uid; /* owner’s user id */
short st_gid; /* owner’s group id */
dev_t st_rdev; /* for special files */
off_t st_size; /* file size in characters */
time_t st_atime; /* time last accessed */
time_t st_mtime; /* time last modified */
time_t st_ctime; /* time inode last changed*/

}

The elements that are most significant for server plug-in API activities are
st_size, st_atime, st_mtime, and st_ctime.

shmem_s
typedef struct {

void *data; /* the data */
HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; /* internal use: filename to unlink if exposed */
SYS_FILE fd; /* internal use: file descriptor for region */

} shmem_s;
 Data Structure Reference 205

cinfo
cinfo
The cinfo data structure records the content information for a file.

typedef struct {
char *type;

/* Identifies what kind of data is in the file*/
char *encoding;

/* encoding dentifies any compression or other /*
/* content-independent transformation that’s been /*
/* applied to the file, such as uuencode)*/

char *language;
/* Identifies the language a text document is in. */

} cinfo;
206 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

B
Appendix B Variables in magnus.conf
When the Enterprise Server starts up, it looks in a file called magnus.conf in
the server-id/config directory to establish a set of global variable settings
that affect the server’s behavior and configuration.

Each directive in magnus.conf specifies a variable and a value, for example:

ServerID https-boots.mcom.com
ServerName boots.mcom.com
Address 123.45.67.89

The order of the directives is not important.

This appendix lists the global settings that can be specified in magnus.conf in
Enterprise Server 3.x and 4.0.

The categories are:

• Server Information

• Object Configuration File

• Language Issues

• DNS Lookup

• Threads, Processes and Connections

• Native Thread Pools

• CGI

• Error Logging and Statistic Collection

• ACL
Appendix B, Variables in magnus.conf 207

Server Information
• Security

• Miscellaneous

For an alphabetical list of directives, see Appendix I, “Alphabetical List of
Directives in magnus.conf.”

Note In Enterprise Server 4.0, much of the functionality of the file cache is controlled
by a new configuration file called nsfc.conf. For information about
nsfc.conf, see the tuning chapter in the Administrator’s Guide for Enterprise
Server 4.0.

Server Information
This sub-section lists the directives in magnus.conf that specify information
about the server. They are:

• Address

• Concurrency

• MtaHost

• Port

• ServerID

• ServerName

• ServerRoot

• User

• VirtualServerFile

Address

If a server has multiple IP addresses and you want it listen for requests only at
a specific IP address, set the value of this directive.

Concurrency

This directive determines the number of CPU processors that the server uses.
By default, the server uses all the CPU processors. You only need to set this
directive if you want the server to use less than the available processors.
208 NSAPI Programmer’s Guide for Enterprise Server 4.0

Server Information
MtaHost

Specifies the name of the SMTP mail server used by the server’s agents. This
value must be specified before reports can be sent to a mailing address.

Port

The Port directive determines which TCP port the server listens to. There
should be only one Port directive in magnus.conf.

Unix: If you choose a port number less than 1024, the server must be started as
root.

Note: The port you choose can affect how users configure their navigators.
Users must specify the port number when accessing the server if the port
number is anything other than 80 (unsecured servers) or 443 (secured servers).

Syntax Port number

number is a whole number between 0 and 65535.

Default If no port is specified, the server assumes 80.

Examples Port 80

Port 8080

Port 8000 (Unix only)

ServerID

Specifies the server ID, such as https-boots.mcom.com.

ServerName

The ServerName directive tells the server what to put in the host name section
of any URLs it sends to the client. This affects URLs the server automatically
generates; it doesn’t affect the URLs for directories and files stored in the server.
This name is what all clients use to access the server; they need to combine this
name with the port number if the port number is anything other than 80.

This name should be the alias name if your server uses an alias. You can’t have
more than one ServerName directive in magnus.conf.
 Variables in magnus.conf 209

Server Information
Syntax ServerName host

host is a fully qualified domain name such as myhost.netscape.com.

Default If ServerName isn’t in magnus.conf, the server attempts to derive a host name
through system calls. If they don’t return a qualified domain name (for
example, it gets myhost instead of myhost.netscape.com), the server won’t
start, and you’ll get a message telling you to manually set this value.

Examples ServerName server.netscape.com

ServerName www.server.anycompany.com

ServerName www.agency.gov

ServerRoot

Specifies the server root, such as d:/netscape/server4/https-
boots.mcom.com. This directive is set during installation and is commented
out. Unlike other directives, the server expects this directive to start with #. Do
not change this directive. If you do, the Server Manager may not function
properly.

Syntax #ServerRoot d:/netscape/server4/https-boots.mcom.com

User

Windows NT: The User directive specifies the user account the server runs
with. By using a specific user account (other than LocalSystem), you can restrict
or enable system features for the server. For example, you can use a user
account that can mount files from another machine.

Unix: The User directive specifies the Unix user account for the server. If the
server is started by the superuser or root user, the server binds to the Port you
specify and then switches its user ID to the user account specified with the
User directive. This directive is ignored if the server isn’t started as root. The
user account you specify should have read permission to the server’s root and
subdirectories. The user account should have write access to the logs directory
and execute permissions to any CGI programs. The user account should not
have write access to the configuration files. This ensures that in the unlikely
event that someone compromises the server, they won’t be able to change
configuration files and gain broader access to your machine. Although you can
use the nobody user, it isn’t recommended.
210 NSAPI Programmer’s Guide for Enterprise Server 4.0

Object Configuration File
Syntax User name

name is the 8-character (or less) login name for the user account.

Default If there is no User directive, the server runs with the user account it was started
with.

Examples User http

User server

User nobody

VirtualServerFile

The value of this directive is the name of a file that specifies virtual servers.
Each line in this file contains an IP, docroot pair.

Object Configuration File
This subsection lists the directives in magnus.conf that provide information
about the object configuration file that instructs the server how to handle
requests. These directives are:

• LoadObjects

• RootObject

LoadObjects

The LoadObjects directive specifies one or more object configuration files to
use on startup, most notably obj.conf, which contains instructions that tell the
server how to handle requests from clients.

Note: Although you can have more than one object configuration file, the
Server Manager interface works on only one file and assumes that it is the file
obj.conf in the config directory in the server root directory. If you use the
Server Manger interface, don’t put the obj.conf file in any other directory and
don’t rename it.

Syntax LoadObjects filename

filename is either the full path name or a relative path name.
 Variables in magnus.conf 211

Language Issues
Unix: When the server starts executing, relative path names are resolved from
the directory specified with the -d command lien flag. If no -d flag was given,
the server looks in the current directory.

Default There is no default. Make sure that your magnus.conf loads the obj.conf
object, otherwise your server will not be able to process requests from clients.

Examples LoadObjects obj.conf

Unix:

LoadObjects /var/ns-server/admin/config/local-objs.conf

RootObject

The RootObject directive tells the server which object loaded from an object
file is the server default. The default object is expected to have all the name
translation directives for the server; any server behavior that is configured in the
default object affects the entire server.

If you specify an object that doesn’t exist, the server doesn’t report an error
until a client tries to retrieve a document. The Server Manager assumes the
default to be the object named default. Don’t deviate from this convention if
you use (or plan to use) the Server Manager.

Syntax RootObject name

name is the name of an object defined in one of the object files loaded with a
LoadObjects directive.

Default There is no default; that is, if you specify RootObject, you must specify a name
with it.

Examples RootObject default

Language Issues
This section lists the directives in magnus.conf related to language issues. The
directives are:

• AcceptLanguage

• AdminLanguage
212 NSAPI Programmer’s Guide for Enterprise Server 4.0

Language Issues
• ClientLanguage

• DefaultLanguage

AcceptLanguage

This directive determines whether or not the server parses the Accept-Language
header sent by the client to indicate which languages the client accepts. If the
value is on, the server parses this header and sends an appropriate language
version based on which language the client can accept. You should set this
value to on only if the server supports multiple languages.

When this directive is set to on, the accelerator cache is disabled since it does
not use AcceptLanguage in its cache keys.

Default The default value is off.

AdminLanguage

For an international version of the server, this directive specifies the language
for the Server Manager. Values en (English), fr (French), de (German) or ja
(Japanese).

ClientLanguage

For an international version of the server, this directive specifies the language
client messages (such as File Not Found). Values en (English), fr (French), de
(German) or ja (Japanese).

DefaultLanguage

For an international version of the server, this directive specifies the default
language for the server. The default language is used for both the client
responses and administration. Values en (English), fr (French), de (German) or
ja (Japanese).
 Variables in magnus.conf 213

DNS Lookup
DNS Lookup
This section lists the directives in magnus.conf that affect DNS lookup. The
directives are:

• AsyncDNS

• DNS

AsyncDNS

Specifies whether asynchronous DNS is allowed. The value is either on or off.
If DNS is enabled, enabling asynchronous DNS improves server performance.

DNS

The DNS directive specifies whether the server performs DNS lookups on clients
that access the server. When a client connects to your server, the server knows
the client’s IP address but not its host name (for example, it knows the client as
198.95.251.30, rather than its host name www.a.com). The server will resolve
the client’s IP address into a host name for operations like access control, CGI,
error reporting, and access logging.

If your server responds to many requests per day, you might want (or need) to
stop host name resolution; doing so can reduce the load on the DNS or NIS
server.

Syntax DNS [on|off]

Default DNS host name resolution is on as a default.

Example DNS on

Threads, Processes and Connections
This subsection lists the directives in magnus.conf that affect the number and
timeout of threads, processes, and connections. They are:

• BlockingListenSockets

• KeepAliveTimeout

• KernelThreads
214 NSAPI Programmer’s Guide for Enterprise Server 4.0

Threads, Processes and Connections
• ListenQ

• MaxKeepAliveConnections

• MaxProcs

• PostThreadsEarly

• RcvBufSize

• RqThrottle

• RqThrottleMinPerSocket

• SndBufSize

• StackSize

• TerminateTimeout

Also see the section "Native Thread Pools" for new directives in Enterprise
Server 4.0 for controlling the pool of native kernel threads.

BlockingListenSockets

This directive determines whether or not the server’s sockets listen in blocking
mode. Do not use this directive with SSL.

KeepAliveTimeout

This directive determines the maximum time that the server holds open an
HTTP Keep-Alive connection or a persistent connection between the client and
the server. The Keep-Alive feature for earlier versions of the server allows the
client/server connection to stay open while the server processes the client
request. For Enterprise Server 3.0+, the default connection is a persistent
connection that remains open until the server closes it or the connection has
been open for longer than the time allowed by KeepAliveTimeout.

KernelThreads

Enterprise Server can support both kernel-level and user-level threads
whenever the operating system supports kernel-level threads. Usually, the
standard debugger and compiler are intended for use with kernel-level threads.
By setting KernelThreads to on, you ensure that the server uses only kernel-
level threads, not user-level threads.
 Variables in magnus.conf 215

Threads, Processes and Connections
ListenQ

Defines the number of incoming connections for a server socket.

MaxKeepAliveConnections

Specifies the maximum number of Keep-Alive and persistent connections that
the server can have open simultaneously.

Default 200

MaxProcs

New in Enterprise Server 4.0.

Specifies the maximum number of processes that the server can have running
simultaneously. If you don’t include MaxProcs in your magnus.conf file, the
server defaults to running a single process.

There is additional discussion of this and other server configuration and
performance tuning issues in the “Configuring the Server for Performance”
chapter in the Enterprise Server 4.0 Administrator’s Guide, which can be found
at

http://home.netscape.com/eng/server/webserver/4.0/ag/esperfrm.htm

The "Enterprise Server 4.0 Administrator’s Guide " is also shipped in the
Enterprise Server 4.0 build in the manuals/ag directory.

PostThreadsEarly

If this directive is set to on, the server checks the whether the minimum number
of threads are available at a socket (as specified by RqThrottleMinPerSocket)
after accepting a connection but before sending the response to the request.
Use this directive when the server will be handling requests that take a long
time to handle, such as those that do long database connections.

RcvBufSize

Controls the size of the receive buffer at the server’s sockets.
216 NSAPI Programmer’s Guide for Enterprise Server 4.0

Native Thread Pools
RqThrottle

Specifies the maximum number of simultaneous requests that the server can
handle simultaneously per socket. Each request runs in its own thread.

There is additional discussion of this and other server configuration and
performance tuning issues in the “Configuring the Server for Performance”
chapter in the Enterprise Server 4.0 Administrator’s Guide, which can be found
at

http://home.netscape.com/eng/server/webserver/4.0/ag/esperfrm.htm

The "Enterprise Server 4.0 Administrator’s Guide " is also shipped in the
Enterprise Server 4.0 build in the manuals/ag directory.

Default 512

RqThrottleMinPerSocket

Specifies the approximate minimum number of threads that wait at each socket
for requests to come in.

SndBufSize

Controls the size of the send buffer at the server’s sockets.

StackSize

Determines the maximum stack size for each request handling thread.

TerminateTimeout

Specifies the time that the server waits for all existing connections to terminate
before it shuts down.

Native Thread Pools
New in Enterprise Server 4.0.
 Variables in magnus.conf 217

Native Thread Pools
This section lists the directives for controlling the size of the native kernel
thread pool. These directives are all new in Enterprise Server 4.0. In previous
versions of the server, you could control the native thread pool by setting the
system variables NSCP_POOL_STACKSIZE, NSCP_POOL_THREADMAX, and
NSCP_POOL_WORKQUEUEMAX.

Note If you have set these values as environment variables and also in magnus.conf,
the environment variable values will take precedence.

The directives are:

• NativePoolStackSize

• NativePoolMaxThreads

• NativePoolMinThreads

• NativePoolQueueSize

NativePoolStackSize

New in Enterprise Server 4.0.

Determines the stack size of each thread in the native (kernel) thread pool.

NativePoolMaxThreads

New in Enterprise Server 4.0.

Determines the maximum number of threads in the native (kernel) thread pool.

Default 128

NativePoolMinThreads

New in Enterprise Server 4.0.

Determines the minimum number of threads in the native (kernel) thread pool.

Default 1

NativePoolQueueSize

New in Enterprise Server 4.0.
218 NSAPI Programmer’s Guide for Enterprise Server 4.0

CGI
Determines the number of threads that can wait in the queue for the thread
pool. If all threads in the pool are busy, then the next request-handling thread
that needs to use a thread in the native pool must wait in the queue. If the
queue is full, the next request-handling thread that tries to get in the queue is
rejected, with the result that it returns a busy response to the client. It is then
free to handle another incoming request instead of being tied up waiting in the
queue.

CGI
This section lists the directives in magnus.conf that affect requests for CGI
programs. The directives are:

• CGIExpirationTimeout

• CGIWaitPid (UNIX Only)

CGIExpirationTimeout

New in Enterprise Server 4.0.

This directive specifies the maximum time in seconds that CGI threads are
allowed to run before being killed.

The value of CGIExpirationTimeout should not be set too low - 5 minutes
would be a good value for most interactive CGIs; but if you have CGIs that are
expected to take longer without misbehaving, then you should set it to the
maximum duration you expect a CGI program to run normally.

CGIWaitPid (UNIX Only)

This directive is to prevent defunct processes on UNIX systems for each SHTML
access. If the value is on, the server calls waitpid explicitly to pickup
terminated shtml or CGI child processes.

Error Logging and Statistic Collection
This section lists the directives in magnus.conf that affect error logging and the
collection of server statistics. They are:
 Variables in magnus.conf 219

Error Logging and Statistic Collection
• DaemonStats (Unix Only)

• ErrorLog

• LogVerbose

• PidLog

DaemonStats (Unix Only)

This directive specifies whether or not the server collects some daemon
statistics. The value is on or off. If the value is off, SNMP statistic collection
will not work.

ErrorLog

The ErrorLog directive specifies the directory where the server logs its errors.
If errors are reported to a file, then the file and directory in which the log is
kept must be writable by whatever user account the server runs as.

Unix: You can also use the syslog facility.

Syntax ErrorLog logfile

logfile can be either a full path and file name.

On Unix systems, it can be the keyword SYSLOG (it must be in all capital
letters).

Default There is no default error log.

Examples Windows NT:

ErrorLog C:\Netscape\ns-home\Logs\Errors

Unix:

ErrorLog /var/ns-server/logs/errors

ErrorLog SYSLOG

LogVerbose

This directive determines whether verbose logging occurs or not. If the value is
on, the server logs all server messages including those that are not logged by
default (such as WAI initialization messages).
220 NSAPI Programmer’s Guide for Enterprise Server 4.0

ACL
PidLog

PidLog specifies a file in which to record the process ID (pid) of the base
server process. Some of the server support programs assume that this log is in
the server root, in logs/pid.

To shut down your server, kill the base server process listed in the pid log file
by using a -TERM signal. To tell your server to reread its configuration files and
reopen its log files, use kill with the -HUP signal.

If the PidLog file isn’t writable by the user account that the server uses, the
server does not log its process ID anywhere. The server won’t start if it can’t log
the process ID.

Syntax PidLog file

file is the full path name and file name where the process ID is stored.

Default There is no default.

Examples PidLog /var/ns-server/logs/pid

PidLog /tmp/ns-server.pid

ACL
This section lists the directives in magnus.conf relevant to access control lists
(ACLs).

• ACLFile

ACLFile

The ACLFile directive specifies an ACL (Access Control List) definition file—a
text file that normally resides in the httpacl directory. Multiple ACLFile
directives can appear in the magnus.conf file. The server reads all the ACL
definitions in all the specified ACL definition files when it starts up. Each ACL
file must have a unique name.

Usually the value of ACLFile is generated.https-servername.acl, and it
resides in the httpacl directory of the server installation directory.

Syntax ACLFile name
 Variables in magnus.conf 221

Security
name is the name of an ACL definition file.

Example ACLFile d:/netscape/server4/httpacl/generated.https-
boots.mcom.com.acl

Security
This section lists the directives in magnus.conf that affect server access and
security issues for Enterprise Server. They are:

• Chroot (Unix only)

• Ciphers

• Security

• ServerCert

• ServerKey

• SSLCacheEntries

• SSLClientAuth

• SSLSessionTimeout

• SSL2

• SSL3

• SSL3Ciphers

• SSL3SessionTimeout

Chroot (Unix only)

The Chroot directive lets the Unix system administrator place the server under
a constraint such that it has access only to files in a given directory, termed the
“Chroot directory”. This is useful if the server’s security is ever compromised.
For example, if an intruder somehow obtains shell access on the server
machine, the intruder could only affect a very limited set of files on the server
machine.

The server must be started as the superuser to use the Chroot directive. CGI
programs must be linked statically, and any binaries (perl or /bin/sh) must
be copied to the Chroot directory.

The user public information directory feature isn’t available unless a copy of /
etc/passwd is kept in the Chroot directory and all of the users home
directories are exactly mirrored within the Chroot directory.
222 NSAPI Programmer’s Guide for Enterprise Server 4.0

Security
A server using Chroot can’t be restarted with the -HUP signal.

Logs and server configuration files should be kept outside the Chroot directory.

IMPORTANT All paths in magnus.conf must be absolute; paths in obj.conf must be
relative to the Chroot directory.

Syntax Chroot directory

directory is the full path name to the directory used as the server’s root
directory.

Default There is no default. You must specify a directory.

Examples Chroot /d/ns-httpd

Chroot /www

Ciphers

The Ciphers directive specifies the ciphers enabled for your server.

Syntax Ciphers +rc4 +rc4export -rc2 -rc2export +idea +des +desede3

A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rc4, rc4export, rc2, rc2export, idea, des, desede3. Any
cipher with export as port of its name is not stronger than 40 bits.

Security

The Security directive tells the server whether encryption (Secure Sockets
Layer version 2 or version 3 or both) is enabled or disabled.

If Security is set to on, and both SSL2 and SSL3 are enabled, then the server
tries SSL3 encryption first. If that fails, the server tries SSL2 encryption.

Syntax Security [on|off]

Default By default, security is off.

Example Security off
 Variables in magnus.conf 223

Security
ServerCert

The ServerCert directive specifies where the certificate file is located.

Syntax ServerCert certfile

certfile is the server’s certificate file, specified as a relative path from the
server root or as an absolute path.

ServerKey

The ServerKey directive tells the server where the key file is located.

Syntax ServerKey keyfile

keyfile is the server’s key file, specified as a relative path from the server root
or as an absolute path.

SSLCacheEntries

Specifies the number of SSL sessions that can be cached.

SSLClientAuth

The SSLClientAuth directive causes SSL3 client authentication on all requests.

Syntax SSL3ClientAuth on|off

on directs that SSL3 client authentication be performed on every request,
independent of ACL-based access control.

SSLSessionTimeout

The SSLSessionTimeout directive controls SSL2 session caching.

Syntax SSLSessionTimeout seconds

seconds is the number of seconds until a cached SSL2 session becomes
invalid. The default value is 100. If the SSLSessionTimeout directive is
specified, the value of seconds is silently constrained to be between 5 and 100
seconds.
224 NSAPI Programmer’s Guide for Enterprise Server 4.0

Security
SSL2

The SSL2 directive tells the server whether Secure Sockets Layer, version 2
encryption is enabled or disabled. The Security directive dominates the SSL2
directive; if SSL2 encryption is enabled but the Security directive is set to off,
then it is as though SSL2 were disabled.

Syntax SSL2 [on|off]

Default By default, security is off.

Example SSL2 off

SSL3

The SSL3 directive tells the server whether Secure Sockets Layer, version 3
security is enabled or disabled. The Security directive dominates the SSL3
directive; if SSL3 security is enabled but the Security directive is set to off,
then it is as though SSL3 were disabled.

Syntax SSL3 [on|off]

Default By default, security is off.

Example SSL3 off

SSL3Ciphers

The SSL3Ciphers directive specifies the SSL3 ciphers enabled for your server.

Syntax SSL3Ciphers +rc4 +rc4export -rc2 -rc2export +idea +des +desede3

A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rsa_rc4_128_md5, rsa3des_sha, rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_md5, and rsa_null_md5. Any cipher with 40
as part of its name is 40 bits.

SSL3SessionTimeout

The SSL3SessionTimeout directive controls SSL3 session caching.

Syntax SSL3SessionTimeout seconds
 Variables in magnus.conf 225

Miscellaneous
seconds is the number of seconds until a cached SSL3 session becomes
invalid. The default value is 86400 (24 hours). If the SSL3SessionTimeout
directive is specified, the value of seconds is silently constrained to be between
5 and 86400 seconds.

Miscellaneous
This section lists miscellaneous other directives in magnus.conf.

• Umask (UNIX only)

Umask (UNIX only)

This directive specifies the umask value used by the NSAPI functions
System_fopenWA() and System_fopenRW() to open files in different modes.
Valid values for this directive are standard UNIX umask values.

For more information on these functions, see system_fopenWA() and
system_fopenRW() in Chapter 5, “NSAPI Function Reference.”
226 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

C
Appendix C MIME Types
This appendix discusses the MIME types file. The sections are:

• Introduction

• Loading the MIME Types File

• Determining the MIME Type

• How the Type Affects the Response

• What Does the Client Do with the MIME Type?

• Syntax of the MIME Types File

• Sample MIME Types File

Introduction
 The MIME types file in the config directory contains mappings between
MIME (Multipurpose Internet Mail Extensions) types and file extensions. For
example, the MIME types file maps the extensions .html and .htm extension
to the type text/html:

type=text/html exts=htm,html

When the Enterprise Server receives a request for a resource from a client, it
uses the MIME type mappings to determine what kind of resource is being
requested.
Appendix C, MIME Types 227

Loading the MIME Types File
MIME types can have three attributes: language (lang), encoding (enc), and
content-type (type). The most commonly used attribute is type. The server
frequently considers the type when deciding how to generate the response to
the client. (The enc and lang attributes are rarely used).

By default, the MIME types file is called mime.types. You should not change
the name of this file unless you have a particular reason for doing so --
everyone expects it to be called mime.types.

Loading the MIME Types File
When the server is initialized, an Init directive in obj.conf invokes the
load-mime-types directive to load the MIME types file:

Init fn="load-types" mime-types="mime.types"

After loading the MIME types file, the server uses it to create a table of
mappings between file extensions and MIME types.

If you make changes to the MIME types file, you will need to restart the server
before the changes take effect. The server loads the MIME types file during the
initialization step, so it does not notice any changes in the MIME types file until
the next time it is initialized.

Determining the MIME Type
During the ObjectType step in the request handling process, the server
determines the MIME type attributes of the resource requested by the client.
Several different server application functions (SAFs) can be used to determine
the MIME type, but the most commonly used one is type-by-extension. This
function tells the server to look up the MIME type according to the requested
resource’s file extension in the MIME types table.

The directive in obj.conf that tells the server to look up the MIME type
according to the extension is:

ObjectType fn=type-by-extension

If the server uses a different SAF, such as force-type, to determine the type,
then the MIME types table is not used for that particular request.
228 NSAPI Programmer’s Guide for Enterprise Server 4.0

How the Type Affects the Response
For more details of the ObjectType step, see Chapter 2, “Syntax and Use of
Obj.conf.”

How the Type Affects the Response
The server considers the value of the type attribute when deciding which
Service directive in obj.conf to use to generate the response to the client.

By default, if the type does not start with magnus-internal/, the server just
sends the requested file to the client. The directive in obj.conf that contains
this instruction is:

Service method=(GET|HEAD|POST) type=*~magnus-internal/* fn=send-file

Note here the use of the special characters *~ to mean "does not match." See
Appendix D, “Wildcard Patterns,” for details of special characters.

By convention, all values of type that require the server to do something other
than just send the requested resource to the client start with magnus-
internal/.

For example, if the requested resource’s file extension is .map, the type is
mapped to magnus-internal/imagemap. If the extension is .cgi, .exe, or
.bat, the type is set to magnus-internal/cgi:

type=magnus-internal/imagemap exts=map
type=magnus-internal/cgi exts=cgi,exe,bat

If the type starts with magnus-internal/, the server executes whichever
Service directive in obj.conf matches the specified type. For example, if the
type is magnus-internal/imagemap, the server uses the imagemap function to
generate the response to the client, as indicated by the following directive:

Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap

If the type is magnus-internal/servlet, the server uses the
NSServletService function to generate the response to the client, as indicated
by the following directive:

Service type="magnus-internal/servlet" fn="NSServletService"
 MIME Types 229

What Does the Client Do with the MIME Type?
What Does the Client Do with the MIME
Type?

The Service function generates the data and sends it to the client that made
the request. When the server sends the data to the client, it also sends headers.
These headers include whichever MIME type attributes are known (which is
usually type).

When the client receives the data, it uses the MIME type to decide what to do
with the data. For browser clients, the usual thing is to display the data in the
browser window.

If the requested resource cannot be displayed in a browser but needs to be
handled by another application, its type starts with application/, for
example application/octet-stream (for .bin file extensions) or
application/x-maker (for .fm file extensions). The client has its own set of
user-editable mappings that tells it which application to use to handle which
types of data.

For example, if the type is application/x-maker, the client usually handles it
by opening Adobe FrameMaker to display the file.

Syntax of the MIME Types File
The first line in the MIME types file identifies the file format and must read:

#--Netscape Communications Corporation MIME Information

Other non-comment lines have the following format:

type=type/subtype exts=[file extensions] icon=icon

• type/subtype is the type and subtype.

• exts are the file extensions associated with this type.

• icon is the name of the icon the browser displays. Netscape Navigator
keeps these images internally. If you use a browser that doesn’t have these
icons, the server delivers them.
230 NSAPI Programmer’s Guide for Enterprise Server 4.0

Sample MIME Types File
Sample MIME Types File
Here is an example of a MIME types file:

#--Netscape Communications Corporation MIME Information
Do not delete the above line. It is used to identify the file type.
type=application/octet-stream exts=bin,exe
type=application/oda exts=oda
type=application/pdf exts=pdf
type=application/postscript exts=ai,eps,ps
type=application/rtf exts=rtf
type=application/x-mif exts=mif,fm
type=application/x-gtar exts=gtar
type=application/x-shar exts=shar
type=application/x-tar exts=tar
type=application/mac-binhex40 exts=hqx

type=audio/basic exts=au,snd
type=audio/x-aiff exts=aif,aiff,aifc
type=audio/x-wav exts=wav

type=image/gif exts=gif
type=image/ief exts=ief
type=image/jpeg exts=jpeg,jpg,jpe
type=image/tiff exts=tiff,tif
type=image/x-rgb exts=rgb
type=image/x-xbitmap exts=xbm
type=image/x-xpixmap exts=xpm
type=image/x-xwindowdump exts=xwd

type=text/html exts=htm,html
type=text/plain exts=txt
type=text/richtext exts=rtx
type=text/tab-separated-values exts=tsv
type=text/x-setext exts=etx

type=video/mpeg exts=mpeg,mpg,mpe
type=video/quicktime exts=qt,mov
type=video/x-msvideo exts=avi

enc=x-gzip exts=gz
enc=x-compress exts=z
enc=x-uuencode exts=uu,uue

type=magnus-internal/imagemap exts=map
type=magnus-internal/parsed-html exts=shtml
type=magnus-internal/cgi exts=cgi,exe,bat
type=magnus-internal/jsp exts=jsp
 MIME Types 231

Sample MIME Types File
232 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

D
Appendix D Wildcard Patterns
This appendix describes the format of wildcard patterns used by the Netscape
Enterprise Server.

These wildcards are used in:

• directives in the configuration file obj.conf (see Chapter 2, “Syntax and
Use of Obj.conf.”)

• various built-in SAFs (see Chapter 3, “Predefined SAFS for Each Stage in the
Request Handling Process.”)

• some NSAPI functions (see Chapter 5, “NSAPI Function Reference.”).

Wildcard patterns use special characters. If you want to use one of these
characters without the special meaning, precede it with a backslash (\)
character.

Wildcard Patterns

Table 6.1 Wildcard patterns

Pattern Use

* Match zero or more characters.

? Match exactly one occurrence of any character.
Appendix D, Wildcard Patterns 233

Wildcard Examples
Wildcard Examples

| An or expression. The substrings used with this operator
can contain other special characters such as * or $. The
substrings must be enclosed in parentheses, for example,
(a|b|c), but the parentheses cannot be nested.

$ Match the end of the string. This is useful in or
expressions.

[abc] Match one occurrence of the characters a, b, or c. Within
these expressions, the only character that needs to be
treated as a special character is]; all others are not
special.

[a-z] Match one occurrence of a character between a and z.

[^az] Match any character except a or z.

*~ This expression, followed by another expression,
removes any pattern matching the second expression.

Table 6.1 Wildcard patterns

Pattern Use

Table 6.2 Wildcard examples

Pattern Result

*.netscape.com Matches any string ending with the characters
.netscape.com.

(quark|energy).netscape
.com

Matches either quark.netscape.com or
energy.netscape.com.

198.93.9[23].??? Matches a numeric string starting with either
198.93.92 or 198.93.93 and ending with any 3
characters.

. Matches any string with a period in it.
234 NSAPI Programmer’s Guide for Enterprise Server 4.0

Wildcard Examples
~netscape- Matches any string except those starting with
netscape-.

*.netscape.com~quark.ne
tscape.com

Matches any host from domain netscape.com except
for a single host quark.netscape.com.

*.netscape.com~(quark|
energy|neutrino).netsca
pe.com

Matches any host from domain .netscape.com except
for hosts quark.netscape.com,
energy.netscape.com, and
neutrino.netscape.com.

.com~.netscape.com Matches any host from domain .com except for hosts
from subdomain netscape.com.

type=*~magnus-internal/
*

Matches any type that does not start with magnus-
internal/.
This wildcard pattern is used in the file obj.conf in the
catch-all Service directive.

Table 6.2 Wildcard examples

Pattern Result
 Wildcard Patterns 235

Wildcard Examples
236 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

E
Appendix E Time Formats
This appendix describes the format strings used for dates and times. These
formats are used by the NSAPI function util_strftime, by some built-in SAFs
such as append-trailer, and by server-parsed HTML (parse-html).

The formats are similar to those used by the strftime C library routine, but
not identical.

Table 6.3 Time formats

Symbol Meaning

%a Abbreviated weekday name (3 chars)

%d Day of month as decimal number (01-31)

%S Second as decimal number (00-59)

%M Minute as decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as decimal number, up to 2099

%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time "HH:MM:SS"

%X Time "HH:MM:SS"
Appendix E, Time Formats 237

%A Full weekday name

%B Full month name

%C "%a %b %e %H:%M:%S %Y"

%c Date & time "%m/%d/%y %H:%M:%S"

%D Date "%m/%d/%y"

%e Day of month as decimal number (1-31) without leading
zeros

%I Hour in 12-hour format (01-12)

%j Day of year as decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

%m Month as decimal number (01-12)

%n line feed

%p A.M./P.M. indicator for 12-hour clock

%R Time "%H:%M"

%r Time "%I:%M:%S %p"

%t tab

%U Week of year as decimal number, with Sunday as first
day of week (00-51)

%w Weekday as decimal number (0-6; Sunday is 0)

%W Week of year as decimal number, with Monday as first
day of week (00-51)

%x Date "%m/%d/%y"

%y Year without century, as decimal number (00-99)

%% Percent sign

Table 6.3 Time formats

Symbol Meaning
238 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

F
Appendix F Server-Parsed HTML Tags
HTML files can contain tags that are executed on the server. This appendix
discusses the standard server-side tags you can include in HTML files.

For information about defining your own server-side tags in Enterprise Server
4.0, see the Programmer’s Guide to Enterprise Server 4.0.

Note: The server parses server-side tags only if server-side parsing has been
activated. Use the "Parse HTML" page in the Content Management tab of the
Server Manager interface to enable or disable the parsing of server-side tags.

When you activate parsing, you need to be sure that the following directives
are added to your obj.conf file (Note that native threads are turned off.):

Init funcs="shtml_init,shtml_send" shlib="<install_dir>/bin/https/bin/
Shtml.dll" NativeThreads="no" fn="load-modules"

Init LateInit = "yes" fn="shtml_init"

Using Server-Parsed Commands
This section describes the HTML commands for including server-parsed tags in
HTML files. These commands are embedded into HTML files which are
processed by the built-in SAF parse-html.
Appendix F, Server-Parsed HTML Tags 239

Using Server-Parsed Commands
The server replaces each command with data determined by the command and
its attributes.

The format for a command is:

<!--#command attribute1 attribute2 ... -->

The format for each attribute is a name-value pair such as:

name="value"

Commands and attribute names should be in lower case.

As you can see, the commands are “hidden” within HTML comments so they
are ignored if not parsed by the server. Following are details of each command
and its attributes.
• config

• include

• echo

• fsize

• flastmod

• exec

config

The config command initializes the format for other commands.

• The errmsg attribute defines a message sent to the client when an error
occurs while parsing the file. This error is also logged in the error log file.

• The timefmt attribute determines the format of the date for the flastmod
command. It uses the same format characters as the util_strftime()
function. Refer to Appendix E, “Time Formats,” for details about time
formats. The default time format is: "%A, %d-%b-%y %T".

• The sizefmt attribute determines the format of the file size for the fsize
command. It may have one of these values:

• bytes to report file size as a whole number in the format 12,345,678.

• abbrev to report file size as a number of KB or MB. This is the default.

Example <!--#config timefmt="%r %a %b %e, %Y" sizefmt="abbrev"-->
240 NSAPI Programmer’s Guide for Enterprise Server 4.0

Using Server-Parsed Commands
This sets the date format like 08:23:15 AM Wed Apr 15, 1996, and the file size
format to the number of KB or MB of characters used by the file.

include

The include command inserts a file into the parsed file (it can’t be a CGI
program). You can nest files by including another parsed file, which then
includes another file, and so on. The user requesting the parsed document must
also have access to the included file if your server uses access control for the
directories where they reside.

• The virtual attribute is the URI of a file on the server.

• The file attribute is a relative path name from the current directory. It may
not contain elements such as ../ and it may not be an absolute path.

Example <!--#include file="bottle.gif"-->

echo

The echo command inserts the value of an environment variable. The var
attribute specifies the environment variable to insert. If the variable is not
found, "(none)" is inserted. See below for additional environment variables.

Example <!--#echo var="DATE_GMT"-->

fsize

The fsize command sends the size of a file. The attributes are the same as
those for the include command (virtual and file). The file size format is
determined by the sizefmt attribute in the config command.

Example <!--#fsize file="bottle.gif"-->
 Server-Parsed HTML Tags 241

Using Server-Parsed Commands
flastmod

The flastmod command prints the date a file was last modified. The attributes
are the same as those for the include command (virtual and file). The
date format is determined by the timefmt attribute in the config command.

Example <!--#flastmod file="bottle.gif"-->

exec

The exec command runs a shell command or CGI program.

• The cmd attribute (Unix only) runs a command using /bin/sh. You may
include any special environment variables in the command.

• The cgi attribute runs a CGI program and includes its output in the parsed
file.

Example <!--#exec cgi="workit.pl"-->

Environment Variables in Commands

In addition to the normal set of environment variables used in CGI, you may
include the following variables in your parsed commands:

• DOCUMENT_NAME

is the file name of the parsed file.

• DOCUMENT_URI

is the virtual path to the parsed file (for example, /shtml/test.shtml).

• QUERY_STRING_UNESCAPED

is the unescaped version of any search query the client sent with all shell-
special characters escaped with the \ character.

• DATE_LOCAL

is the current date and local time.

• DATE_GMT

is the current date and time expressed in Greenwich Mean Time.

• LAST_MODIFIED
242 NSAPI Programmer’s Guide for Enterprise Server 4.0

Using Server-Parsed Commands
is the date the file was last modified.
 Server-Parsed HTML Tags 243

Using Server-Parsed Commands
244 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

G
Appendix G HyperText Transfer Protocol
The HyperText Transfer Protocol (HTTP) is a protocol (a set of rules that
describes how information is exchanged) that allows a client (such as a web
browser) and a web server to communicate with each other. This appendix
provides a short introduction to a few HTTP basics. For more information on
HTTP, see the IETF home page at:

http://www.ietf.org/home.html

Introduction
HTTP is based on a request/response model. The browser opens a connection
to the server and sends a request to the server.

The server processes the request and generates a response which it sends to
the browser.The server then closes the connection.

Netscape Enterprise Server 3.x and 4.0 supports HTTP 1.1. Previous versions of
the server supported HTTP 1.0. The server is conditionally compliant with the
HTTP 1.1 proposed standard, as approved by the Internet Engineering Steering
Group (IESG) and the Internet Engineering Task Force (IETF) HTTP working
group. For more information on the criteria for being conditionally compliant,
see the Hypertext Transfer Protocol—HTTP/1.1 specification (RFC 2068) at:

http://www.ietf.org/html.charters/http-charter.html
Appendix G, HyperText Transfer Protocol 245

Requests
Requests
A request from a browser to a server includes the following information:

• Request Method, URI, and Protocol Version

• Request Headers

• Request Data

Request Method, URI, and Protocol
Version

A browser can request information using a number of methods. The commonly
used methods include the following:

• GET—Requests the specified resource (such as a document or image)

• HEAD—Requests only the header information for the document

• POST—Requests that the server accept some data from the browser, such as
form input for a CGI program

• PUT—Replaces the contents of a server’s document with data from the
browser

Request Headers

The browser can send headers to the server. Most are optional. Some
commonly used request headers are shown in Table 6.4.
246 NSAPI Programmer’s Guide for Enterprise Server 4.0

Responses
Request Data

If the browser has made a POST or PUT request, it sends data after the blank
line following the request headers. If the browser sends a GET or HEAD request,
there is no data to send.

Responses
The server’s response includes the following:

• HTTP Protocol Version, Status Code, and Reason Phrase

• Response Headers

• Response Data

HTTP Protocol Version, Status Code,
and Reason Phrase

The server sends back a status code, which is a three-digit numeric code. The
five categories of status codes are:

• 100-199 a provisional response.

Table 6.4 Common request headers

Request header Description

Accept The file types the browser can accept.

Authorization Used if the browser wants to authenticate itself with a
server; information such as the username and password
are included.

User-agent The name and version of the browser software.

Referer The URL of the document where the user clicked on the
link.

Host The Internet host and port number of the resource being
requested.
 HyperText Transfer Protocol 247

Responses
• 200-299 a successful transaction.

• 300-399 the requested resource should be retrieved from a different
location.

• 400-499 an error was caused by the browser.

• 500-599 a serious error occurred in the server.

Response Headers

The response headers contain information about the server and the response
data. Common response headers are shown in Table 6.6

Table 6.5 Common HTTP status codes

Status code Meaning

200 OK; successful transaction.

302 Found. Redirection to a new URL. The original URL has
moved. This is not an error; most browsers will get the
new page.

304 Use a local copy. If a browser already has a page in its
cache, and the page is requested again, some browsers
(such as Netscape Navigator) relay to the web server the
“last-modified” timestamp on the browser’s cached copy.
If the copy on the server is not newer than the browser’s
copy, the server returns a 304 code instead of returning
the page, reducing unnecessary network traffic. This is
not an error.

401 Unauthorized. The user requested a document but didn’t
provide a valid username or password.

403 Forbidden. Access to this URL is forbidden.

404 Not found. The document requested isn’t on the server.
This code can also be sent if the server has been told to
protect the document by telling unauthorized people
that it doesn’t exist.

500 Server error. A server-related error occurred. The server
administrator should check the server’s error log to see
what happened.
248 NSAPI Programmer’s Guide for Enterprise Server 4.0

Responses
.

Response Data

The server sends a blank line after the last header. It then sends the response
data such as an image or an HTML page.

Table 6.6 Common response headers

Response header Description

Server The name and version of the web server.

Date The current date (in Greenwich Mean Time).

Last-modified The date when the document was last modified.

Expires The date when the document expires.

Content-length The length of the data that follows (in bytes).

Content-type The MIME type of the following data.

WWW-authenticate Used during authentication and includes information that
tells the browser software what is necessary for
authentication (such as username and password).
 HyperText Transfer Protocol 249

Responses
250 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

H
Appendix H Alphabetical List of NSAPI Functions

and Macros
C
CALLOC() 118
cinfo_find() 118
condvar_init() 119
condvar_notify() 119
condvar_terminate() 120
condvar_wait() 120
crit_enter() 120
crit_exit() 121
crit_init() 121
crit_terminate() 121

D
daemon_atrestart() 122

F
filebuf_buf2sd() 122
Appendix H, Alphabetical List of NSAPI Functions and Macros 251

filebuf_close() 123
filebuf_getc() 123
filebuf_open() 124
filebuf_open_nostat() 124
FREE() 125
func_exec() 125
func_find() 126

L
log_error() 127

M
magnus_atrestart() 128
MALLOC() 128

N
net_ip2host() 129
net_read() 129
net_write() 130
netbuf_buf2sd() 130
netbuf_close() 130
netbuf_getc() 131
netbuf_grab() 131
netbuf_open() 131

P
param_create() 132
param_free() 132
pblock_copy() 133
252 NSAPI Programmer’s Guide for Enterprise Server 4.0

pblock_create() 133
pblock_dup() 133
pblock_find() 134
pblock_findval() 134
pblock_free() 135
pblock_nninsert() 135
pblock_nvinsert() 135
pblock_pb2env() 136
pblock_pblock2str() 136
pblock_pinsert() 137
pblock_remove() 137
pblock_str2pblock() 137
PERM_CALLOC() 138
PERM_FREE() 139
PERM_MALLOC() 139
PERM_REALLOC() 140
PERM_STRDUP() 140
protocol_dump822() 141
protocol_set_finfo() 141
protocol_start_response() 142
protocol_status() 143
protocol_uri2url() 144
protocol_uri2url_dynamic() 144

R
REALLOC() 145
request_header() 146
request_stat_path() 146
request_translate_uri() 147

S
session_maxdns() 148
shexp_casecmp() 148
shexp_cmp() 149
shexp_match() 149
shexp_valid() 150
 Alphabetical List of NSAPI Functions and Macros 253

STRDUP() 150
system_errmsg() 151
system_fclose() 151
system_flock() 152
system_fopenRO() 152
system_fopenRW() 152
system_fopenWA() 153
system_fread() 153
system_fwrite() 154
system_fwrite_atomic() 154
system_gmtime() 155
system_localtime() 155
system_lseek() 156
system_rename() 156
system_ulock() 157
system_unix2local() 157
systhread_attach() 157
systhread_current() 158
systhread_getdata() 158
systhread_newkey() 159
systhread_setdata() 159
systhread_sleep() 159
systhread_start() 160
systhread_timerset() 160

U
util_can_exec() 161
util_chdir2path() 161
util_chdir2path() 162
util_cookie_find() 162
util_cookie_next() 162
util_env_find() 163
util_env_free() 163
util_env_replace() 164
util_env_str() 164
util_getline() 164
util_hostname() 165
util_is_mozilla() 165
util_is_url() 166
254 NSAPI Programmer’s Guide for Enterprise Server 4.0

util_itoa() 166
util_later_than() 166
util_sh_escape() 167
util_snprintf() 167
util_sprintf() 168
util_strcasecmp() 168
util_strftime() 169
util_strncasecmp() 169
util_uri_escape() 170
util_uri_is_evil() 170
util_uri_parse() 171
util_uri_unescape() 171
util_vsnprintf() 171
util_vsprintf() 172
 Alphabetical List of NSAPI Functions and Macros 255

256 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

I
Appendix I Alphabetical List of Directives in

magnus.conf
A
AcceptLanguage 203
ACLFile 210
Address 198
AdminLanguage 203
AsyncDNS 204

B
BlockingListenSockets 205

C
CGIExpirationTimeout 208
CGIWaitPid (UNIX Only) 208
Chroot (Unix only) 211
Ciphers 212
ClientLanguage 203
Concurrency 198
Appendix I, Alphabetical List of Directives in magnus.conf 257

D
DaemonStats (Unix Only) 209
DefaultLanguage 203
DNS 204

E
ErrorLog 209

K
KeepAliveTimeout 205
KernelThreads 205

L
ListenQ 205
LoadObjects 201
LogVerbose 209

M
MaxKeepAliveConnections 205
MtaHost 199
MaxProcs 205

N
NativePoolMaxThreads 207
NativePoolMinThreads 207
258 NSAPI Programmer’s Guide for Enterprise Server 4.0

NativePoolQueueSize 207
NativePoolStackSize 207

P
PidLog 210
Port 199
PostThreadsEarly 206

R
RcvBufSize 206
RootObject 202
RqThrottle 206
RqThrottleMinPerSocket 206

S
Security 212
ServerCert 212
ServerID 199
ServerKey 213
ServerName 199
ServerRoot 200
SndBufSize 206
SSL2 213
SSL3 214
SSL3Ciphers 214
SSL3SessionTimeout 214
SSLCacheEntries 213
SSLClientAuth 213
SSLSessionTimeout 213
StackSize 206
 Alphabetical List of Directives in magnus.conf 259

T
TerminateTimeout 206

U
Umask (UNIX only) 215
User 200

V
VirtualServerFile 201
260 NSAPI Programmer’s Guide for Enterprise Server 4.0

Appendix

J
Appendix J Alphabetical List of Pre-defined SAFs
A
add-footer 78
add-header 79
append-trailer 80
assign-name 57

B
basic-auth 54
basic-ncsa 55

C
cache-init 38
cert2user 62
check-acl 63
cindex-init 40
common-log 91
Appendix J, Alphabetical List of Pre-defined SAFs 261

D
deny-existence 64
dns-cache-init 41
document-root 58

F
find-index 65
find-links 65
find-pathinfo 66
flex-init 42
flex-log 92
flex-rotate-init 46
force-type 74

G
get-client-cert 66
get-sslid 56

H
home-page 59

I
imagemap 81
index-common 81
index-simple 83
init-cgi 47
init-clf 48
init-uhome 49
262 NSAPI Programmer’s Guide for Enterprise Server 4.0

K
key-toosmall 83

L
list-dir 84
load-config 68
load-modules 49
load-types 50

M
make-dir 85
ntcgicheck 70

N
nt-uri-clean 70

P
parse-html 85
pfx2dir 59
pool-init 51

Q
query-handler 86
 Alphabetical List of Pre-defined SAFs 263

R
record-useragent 93
redirect 60
remove-dir 86
remove-file 87
rename-file 87
require-auth 71

S
send-cgi 88
send-error 94
send-file 88
send-range 89
send-shellcgi 89
send-wincgi 90
shtml-hacktype 75
ssl-check 72
ssl-logout 72

T
thread-pool-init 52
type-by-exp 75
type-by-extension 76

U
unix-home 61
unix-uri-clean 73
upload-file 90
264 NSAPI Programmer’s Guide for Enterprise Server 4.0

Index

A
abbrev, value of sizefmt attribute 240

about this book 7

AcceptLanguage
magnus.conf directive 213

access
logging 97, 98

access control lists
see also ACLs

ACLFile
magnus.conf directive 221

ACLs
settings in magnus.conf 221

add-footer
Service-class function 84

add-header
Service-class function 85

AddLog 13
example of custom SAF 196
flow of control 32
requirements for SAFs 120
summary 20

AddLog directive
obj.conf 97

Address
magnus.conf directive 208

AdminLanguage
magnus.conf directive 213

alphabetical reference
magnus.conf variables 257
NSAPI functions 123
SAFs 261

API functions
cif_find 124

condvar_init 125
condvar_notify 125
condvar_terminate 126
condvar_wait 126
crit_enter 126
crit_exit 127
crit_init 127
crit_terminate 128
daemon_atrestart 128
filebuf_buf2sd 129
filebuf_close 129
filebuf_getc 130
filebuf_open 130
filebuf_open_nostat 131
FREE 131
func_exec 132
func_find 132
log_error 133
magnus_atrestart 134
MALLOC 124, 134
net_ip2host 135
net_read 135
net_write 136
netbuf_buf2sd 136
netbuf_close 137
netbuf_getc 137
netbuf_grab 137
netbuf_open 138
param_create 138
param_free 139
pblock_copy 139
pblock_create 139
pblock_dup 140
pblock_find 140
pblock_findval 141
pblock_free 141
pblock_nninsert 141
pblock_nvinsert 142
pblock_pb2env 142
Index 265

pblock_pblock2str 143
pblock_pinsert 143
pblock_remove 144
pblock_str2pblock 144
PERM_FREE 145
PERM_MALLOC 145, 146
PERM_STRDUP 147
protocol_dump822 147
protocol_set_finfo 148
protocol_start_response 148
protocol_status 149
protocol_uri2url 150, 151
REALLOC 152
request_header 152
request_stat_path 153
request_translate_uri 154
session_maxdns 154
shexp_casecmp 154
shexp_cmp 155
shexp_match 156
shexp_valid 156
STRDUP 157
system_errmsg 157
system_fclose 158
system_flock 158
system_fopenRO 158
system_fopenRW 159
system_fopenWA 159
system_fread 160
system_fwrite 160
system_fwrite_atomic 161
system_gmtime 161
system_localtime 162
system_lseek 162
system_rename 163
system_ulock 162, 163
system_unix2local 164
systhread_current 164
systhread_getdata 165
systhread_newkey 165
systhread_setdata 166
systhread_sleep 166
systhread_start 166
systhread_timerset 167
util_can_exec 167

util_chdir2path 168
util_cookie_find 169
util_cookie_next 169
util_env_find 170
util_env_free 170
util_env_replace 170
util_env_str 171
util_getline 171
util_hostname 172
util_is_mozilla 172
util_is_url 173
util_itoa 173
util_later_than 173
util_sh_escape 174
util_snprintf 174
util_strcasecmp 175
util_strftime 176
util_strncasecmp 176
util_uri_escape 177
util_uri_is_evil 177
util_uri_parse 178
util_uri_unescape 178
util_vsnprintf 178
util_vsprintf 179
util-cookie_find 169
util-sprintf 175

append-trailer
Service-class function 86

assign-name
NameTrans-class function 61

AsyncDNS
magnus.conf directive 214

AUTH_TYPE environment variable 121

AUTH_USER environment variable 121

AuthTrans 13
directive, full description 57
example of custom SAF 183
flow of control 25
requirements for SAFs 118
summary 18

auth-type function 58, 59
266 NSAPI Programmer’s Guide for Enterprise Server 4.0

B
basic-auth

AuthTrans-class function 58

basic-ncsa
AuthTrans-class function 59

basics
of server operation 9

BlockingListenSockets
magnus.conf directive 215

browsers 11

builtin SAFs, core SAFs 37

bytes, value of sizefmt attribute 240

C
cache

enabling memory allocation pool 55
for static files 40

cache-init
Init-class function 40

case sensitivity
in obj.conf 34

catch-all
Service directive 32

cert2user
PathCheck-class function 67

certificates
settings in magnus.conf 222

CGI
environment variables in NSAPI 121
settings in magnus.conf 219
to NSAPI conversion 121

cgi attribute of the exec command 242

CGIExpirationTimeout
magnus.conf directive 219

CGIWaitPid
magnus.conf directive 219

check-acl
PathCheck-class function 68

checking

secret keys 77

Chroot
magnus.conf directive 222

cif_find
API function 124

cindex-ini
Init-class function 43

cinfo
NSAPI data structure 206

cinfo_find
API function 124

Ciphers
magnus.conf directive 223

client
field in session parameter 105
getting DNS name for 204
getting IP address for 204
sessions and 202

CLIENT_CERT environment variable 122

ClientLanguage
magnus.conf directive 213

clients
CLIENT tag 23
requests 11

CLIENT tag 23

cmd attribute of the exec command 242

comments
in obj.conf 35

common-log
Service-class function 97

Common Log subsystem, initializing 52

compiling
custom SAFs 110

Concurrency

magnus.conf directive 208

condvar_init
API function 125

condvar_notify
API function 125
Index 267

condvar_terminate
API function 126

condvar_wait
API function 126

config command
server-parsed HTML 240

config directory
location 10

configuration files 10
location 10

connectons
settings in magnus.conf 214

CONTENT_LENGTH environment variable 121

CONTENT_TYPE environment variable 121

cookies
NSAPI utility functions 169

creating
custom SAFs 103

crit_enter
API function 126

crit_exit
API function 127

crit_init
API function 127

crit_terminate
API function 128

csd
field in session parameter 105

custom SAFs
creating 103

D
daemon_atrestart

API function 128

DaemonStats
magnus.conf directive 220

data structures
NSAPI reference 201

DATE_GMT
server parsed variable 242

DATE_LOCAL
server parsed variable 242

Day of month 237

default
Service directive 32

DefaultLanguage
magnus.conf directive 213

defining
custom SAFs 103

deny-existence
PathCheck-class function 69

directive_is_cacheable
field in request parameter 106

directives
for handling requests 14
in obj.conf 37
magnus.conf 207
order of 33
SAFs for each directive 117
summary for obj.conf 18
syntax in obj.conf 18

DNS
magnus.conf directive 214

dns-cache-init 45

DNS lookup
directives in magnus.conf 214

DNS names
getting clients 204

DOCUMENT_NAME
server parsed variable 242

DOCUMENT_URI
server parsed variable 242

document-root 62

documents
file typing 82

dynamic link library, loading 53

E
echo command

server-parsed HTML 241
268 NSAPI Programmer’s Guide for Enterprise Server 4.0

enc 228

Enterprise Server
see server

Enterprise Server 4.0 Administrator’s Guide 216,
217

environment variables
and init-cgi function 51
CGI to NSAPI conversion 121
in server-prased commands 242

errmsg attribute of config command 240

Error 14

Error directive
flow of control 33
obj.conf 100
requirements for SAFs 120
summary 21

ErrorLog
magnus.conf directive 220

error logging
settings in magnus.conf 219

errors
finding most recent system error 157
sending customized messages 101

examples
location in the build 182
of custom SAFs (plugins) 181
of custom SAFs in the build 182
wildcard patterns 234

exec command
server-parsed HTML 242

F
fancy indexing 43

file attribute of include command 241

filebuf_buf2sd
API function 129

filebuf_close
API function 129

filebuf_getc
API function 130

filebuf_open
API function 130

filebuf_open_nostat
API function 131

file cache 40
and logging 47
initializing 40

file descriptor
closing 158
locking 158
opening read-only 158
opening read-write 159
opening write-append 159
reading into a buffer 160
unlocking 162, 163
writing from a buffer 160
writing without interruption 161

file I/O routines 115

file name extension
mapping to MIME types 54

file name extensions
MIME types 227
object type 28

files
forcing type of 80
mapping types of 227
typing 82
typing by wildcard pattern 80

file types 80

find-index
PathCheck-class function 70

find-links
PathCheck-class function 70

find-pathinfo
PathCheck-class function 71

flastmod command
affected by timefmt attribute 240
server-parsed HTML 242

flexible logging 45

flex-init
Init-class function 45
Index 269

flex-log
AddLog-class function 98

flex-rotate-init
Init-class function 50

flow of control 24

fn argument
in directives in obj.conf 18

footers
adding 84

force-type 29
example 29
ObjectType-class function 80

forcing
object type 28

formats
time 237

forward slashes 35

FREE
API function 131

fsize command
server-parsed HTML 241

func_exec
API function 132

func_find
API function 132

funcs 111

funcs parameter 53

functions
pre-defined SAFs 37
see also SAFs

G
GATEWAY_INTERFACE environment

variable 121

GET
method 83

get-client-cert
PathCheck-class function 71

GMT time
getting thread-safe value 161

H
hard links, finding 70

HEAD
method 83

header files
nsapi.h 110, 201

headers 12
adding 85
field in request parameter 106

home-page 63

HOST environment variable 122

HTML tags
server-parsed 239

HTTP 245
basics 12
compliance with 1.1 245
requests 246
responses 247

HTTP_* environment variable 121

HTTPS_KEYSIZE environment variable 122

HTTPS_SECRETKEYSIZE environment
variable 122

HTTPS environment variable 122

HUP signal
Chroot and 223
PidLog and 221

HyperText Transfer Protocol
see HTTP

I
imagemap

Service-class function 87

include command
server-parsed HTML 241

include directory
for SAFs 110

index-common
Service-class function 87

indexing
270 NSAPI Programmer’s Guide for Enterprise Server 4.0

fancy 43

index-simple
Service-class function 89

Init
flow of control 24
obj.conf directive 39
requirements for SAFs 118
summary 18

init-cgi 51

Init-class function 45, 51

init-clf
Init-class function 52

initializing
global settings 207
plugins 110
SAFs 110

initializing for CGI 51

init-uhome
Init-class function 53

IP address
getting clients 204

iponly function 98, 99

K
KeepAliveTimeout

magnus.conf directive 215

KernelThreads
magnus.conf directive 215

key-toosmall
Service-class function 89

L
lang 228

language issues
directives in magnus.conf 212

LAST_MODIFIED
server parsed variable 242

LateInit parameter to Init directive 40

line continuation 35

linking
SAFs 110

list-dir
Service-class function 90

ListenQ
magnus.conf directive 216

load-config
PathCheck-class function 73

loading
custom SAFs 110
MIME types file 228
plugins 110
SAFs 110

load-modules 110
example 111
Init-class function 53

LoadObjects
magnus.conf directive 211

load-types
Init-class function 54

localtime
getting thread-safe value 162

local-types parameter 55

log_error
API function 133

log analyzer 97, 98

log file 97, 98
analyzer for 97, 98

log format 47

logging
cookies 47
flexible 45
impact on cache acceleration 47
relaxed mode 47
rotating logs 50
settings in magnus.conf 219

LogVerbose
magnus.conf directive 220
Index 271

M
magnus.conf 10, 207

alphabetical list of directives 257
directives in 207

magnus_atrestart
API function 134

make-dir
Service-class function 91

MALLOC
API function 124, 134

matching
special characters 233

MaxKeepAliveConnections
magnus.conf directive 216

MaxProcs
magnus.conf directive 216

memory allocation, pool-init Init-class
function 55

memory management routines 115

method 12
server and 83

mime.types 11

mime.types file 227, 228
sample of 231

MIME types 227
mapping from file name extensions 54
typing files 82

MIME types file
loading 228
syntax 230

MIME-types parameter 55

month name 237

mozilla-redirect 64

MtaHost
magnus.conf directive 209

N
name attribute

in obj.conf objects 21

in objects 22

NameTrans 13
directive in obj.conf 61
example of custom SAF 185
flow of control 25
requirements for SAFs 119
summary 19

NameTrans-class function 62, 63, 64

NativePoolMaxThreads
magnus.conf directive 218

NativePoolMinThreads
magnus.conf directive 218

NativePoolQueueSize
magnus.conf directive 218

NativePoolStackSize
magnus.conf directive 218

NativeThread parameter to Init directive 54

native thread pools
settings in magnus.conf 217

NativeThreads 239

net_ip2host
API function 135

net_read
API function 135

net_write
API function 136

netbuf_buf2sd
API function 136

netbuf_close
API function 137

netbuf_getc
API function 137

netbuf_grab
API function 137

netbuf_open
API function 138

network I/O routines 116

NSAPI
alphabetical function reference

functions
272 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI reference 123
CGI environment variables 121
data structures reference 201
using 14

nsapi.h 110, 201
location 110
overview of data structures 201

NSAPI functions
overview 113

NSCP_POOL_STACKSIZE 218

NSCP_POOL_THREADMAX 218

NSCP_POOL_WORKQUEUEMAX 218

nshttpd3x.lib 110

nshttpd40.lib 110

ntcgicheck
PathCheck-class function 76

nt-uri-clean
PathCheck-class function 75

O
obj.conf 10

adding directives for new SAFs 111
case sensitivity 34
CLIENT tag 23
comments 35
directives 17, 37
directives summary 18
directive syntax 18
flow of control 24
OBJECT tag 21
parameters for directives 34
processinng other objects 26
server instructions 17
syntax rules 33
use 17

object
default,

specifying 212

object configuration file
specifying in magnus.conf 211

objects

processing non-default objects 26

OBJECT tag 21
name attribute 21
ppath attribute 21

ObjectType 13
directive in obj.conf 79
example of custom SAF 191
flow of control 27
requirements for SAFs 119
summary 19

object type
forcing 28
setting by file extension 28

order
of directives in obj.conf 33

overview
server operation 9

P
param_create

API function 138

param_free
API function 139

parameter block
manipulation routines 114
SAF parameter 104

parameters
for obj.conf directives 34
for SAFs 104

parse-html
Service-class function 91

path
absolute with Chroot directive 223

PATH_INFO environment variable 121

PATH_TRANSLATED environment variable 121

PathCheck 13
directive in obj.conf 66
example of custom SAF 188
flow of control 27
requirements for SAFs 119
summary 19
Index 273

path name
converting Unix-style to local 164

path names 35

patterns 233

pb
SAF parameter 104

pb_entry
NSAPI data structure 203

pb_param
NSAPI data structure 203

pblock
NSAPI data structure 203
see parameter block

pblock_copy
API function 139

pblock_create
API function 139

pblock_dup
API function 140

pblock_find
API function 140

pblock_findval
API function 141

pblock_free
API function 141

pblock_nninsert
API function 141

pblock_nvinsert
API function 142

pblock_pb2env
API function 142

pblock_pblock2str
API function 143

pblock_pinsert
API function 143

pblock_remove
API function 144

pblock_str2pblock
API function 144

PERM_FREE

API function 145

PERM_MALLOC
API function 145, 146

PERM_STRDUP
API function 147

pfx2dir 64
example 26
NameTrans-class function 64

PidLog
magnus.conf directive 221

plugins
creating 103
example of new plugins 181
instructing the server to use 111
loading and initializing 110

pool-init Init-class function 55

port
magnus.conf directive 209
specifying 209

POST
method 83

PostThreadsEarly
magnus.conf directive 216

ppath attribute
in obj.conf objects 21
in objects 23

predefined SAFs 37

preface 7

processes
settings in magnus.conf 214

processing
non-default objects 26

protocol_dump822
API function 147

protocol_set_finfo
API function 148

protocol_start_response
API function 148

protocol_status
API function 149
274 NSAPI Programmer’s Guide for Enterprise Server 4.0

protocol_uri2url
API function 150, 151

protocol utility routines 115

Q
QUERY_STRING_UNESCAPED

server parsed variable 242

QUERY_STRING environment variable 121

QUERY environment variable 122

query-handler
Service-class function 92

quotes 34

R
RcvBufSize

magnus.conf directive 216

REALLOC
API function 152

record-useragent
Service-class function 99

redirect
NameTrans-class function 64

reference
NSAPI data structures 201
NSAPI functions 123

relaxed logging 47

REMOTE_ADDR environment variable 121

REMOTE_HOST environment variable 122

REMOTE_IDENT environment variable 122

REMOTE_USER environment variable 122

remove-dir
Service-class function 92

remove-file
Service-class function 93

rename-file
Service-class function 93

REQ_ABORTED
response code 108

REQ_EXIT
response code 108

REQ_NOACTION
response code 107

REQ_PROCEED
response code 107

reqpb
field in request parameter 106

request
NSAPI data structure 204
SAF parameter 105

REQUEST_METHOD environment variable 122

request_stat_path
API function 153

request_translate_uri
API function 154

request-handling process 11
flow of control 24
steps 13

request-header
API function 152

request-response process 11
see request-handling process

requests
directives for handling 14
how server handles 11
HTTP 246
methods 12
steps in handling 13

require-auth
PathCheck-class function 76

responses, HTTP 247

result codes 107

RootObject
magnus.conf directive 212

rotating logs 50

rq
SAF parameter 105

rq->directive_is_cacheable 106

rq->headers 106
Index 275

rq->reqpb 106

rq->srvhdrs 106

rq->vars 106

RqThrottle
magnus.conf directive 217

RqThrottleMinPerSocket
magnus.conf directive 217

rules
for editing obj.conf 33

S
SAF

return values 107

SAFs
alphabetical list 261
compiling and linking 110
creating 103
examples of custom SAFs 181
for each directive 117
include directory 110
interface 104
loading and initializing 110
parameters 104
predefined 37
result codes 107
signature 104
writing new 14

SCRIPT_NAME environment variable 122

search patterns 233

secret keys
checking 77

Security
magnus.conf directive 223

security
constraining the server 222
settings in mangus.conf 222

send-cgi
Service-class function 94

send-error
Error-class function 100

send-file

Service-class function 94

send-range
Service-class function 95

send-shellcgi
Service-class function 95

send-wincgi
Service-class function 96

separators 34

server
basics of operation 9
constraining 222
flow of control 24
initialization variables in magnus.conf 207
initializing 39
instructions for using plugins 111
instructions in obj.conf 17
modifying 9
processing non-default objects 26
request handling 11

SERVER_NAME environment variable 122

SERVER_PORT environment variable 122

SERVER_PROTOCOL environment variable 122

SERVER_SOFTWARE environment variable 122

SERVER_URL environment variable 122

Server Application Functions
see SAFs

ServerCert
magnus.conf directive 224

ServerID
magnus.conf directive 209

server information
magnus.conf directives 208

ServerKey
magnus.conf directive 224

ServerName
magnus.conf directive 209

server-parsed HTML tags 239

ServerRoot
magnus.conf directive 210

servers
276 NSAPI Programmer’s Guide for Enterprise Server 4.0

HUP signal 221
killing process of 221
TERM signal 221

server-side
HTML tags 239
includes 239

Service 13
default directive 32
directive in obj.conf 83
directives for new SAFs (plugins) 112
example of custom SAF 194
examples 30
flow of control 29
requirements for SAFs 120
summary 20

session
defined 202
NSAPI data structure 202
resolving the IP address of 154
SAF parameter 105

Session->client
NSAPI data structure 204

session_maxdns
API function 154

shared library, loading 53

shell expression
comparing (case-blind) to a string 154
comparing (case-sensitive) to a string 155,

156
validating 156

shexp_casecmp
API function 154

shexp_cmp
API function 155

shexp_match
API function 156

shexp_valid
API function 156

shlib 110

shlib parameter 53

shmem_s
NSAPI data structure 205

shtml_init 239

shtml_send 239

shtml-hacktype
ObjectType-class function 80

sizefmt attribute of config command 240

sn
SAF parameter 105

sn->client 105

sn->csd 105

SndBufSize
magnus.conf directive 217

socket
closing 137
reading from 135
sending a buffer to 136
sending file buffer to 129
writing to 136

spaces 35

special characters 233

sprintf, see util_sprintf 175

srvhdrs
field in request parameter 106

SSL
settings in magnus.conf 222

SSL2
magnus.conf directive 225

SSL3Ciphers
magnus.conf directive 225

SSL3SessionTimeout
magnus.conf directive 225

SSLCacheEntries
magnus.conf directive 224

ssl-check
PathCheck-class function 77

SSLClientAuth
magnus.conf directive 224

SSLSessionTimeout
magnus.conf directive 224

StackSize
magnus.conf directive 217
Index 277

stat
structure 205

statistic collection
settings in magnus.conf 219

STRDUP
API function 157

string
creating a copy of 157

symbolic links
finding 70

syntax
directives in obj.conf 18
for editing obj.conf 33
MIME types file 230

system 163

system_errmsg
API function 157

system_fclose
API function 158

system_flock
API function 158

system_fopenRO
API function 158

system_fopenRW
API function 159

system_fopenWA
API function 159

system_fread
API function 160

system_fwrite
API function 160

system_fwrite_atomic
API function 161

system_gmtime
API function 161

system_localtime
API function 162

system_lseek
API function 162

system_rename

API function 163

system_ulock
API function 162, 163

system_unix2local
API function 164

systhread_current
API function 164

systhread_getdata
API function 165

systhread_newkey
API function 165

systhread_setdata
API function 166

systhread_sleep
API function 166

systhread_start
API function 166

systhread_timerset
API function 167

T
TerminateTimeout

magnus.conf directive 217

TERM signal 221

thread
allocating a key for 165
creating 166
getting a pointer to 164
getting data belonging to 165
putting to sleep 166
setting data belonging to 166
setting interrupt timer 167

thread pools
settings in magnus.conf 217

thread routines 116

threads
settings in magnus.conf 214

timefmt tag 240

time formats 237

trailers
278 NSAPI Programmer’s Guide for Enterprise Server 4.0

appending 86

type
content-type 228

type-by-exp
ObjectType-class function 80

type-by-extension 228
ObjectType-class function 82

U
Umask

magnus.conf directive 226

Unix
constraining the server 222

unix-home
NameTrans-class function 65

unix-uri-clean
PathCheck-class function 78

Unix user account
specifying 210

upload-file
Service-class function 96

URL
mapping to other servers 64
translated to file path 19

User
magnus.conf directive 210

user account
specifying 210

user home directories
symlinks and 71

util_can_exec
API function 167

util_chdir2path
API function 168

util_cookie_find
API function 169

util_cookie_next
API function 169

util_env_find
API function 170

util_env_free
API function 170

util_env_replace
API function 170

util_env_str
API function 171

util_getline
API function 171

util_hostname
API function 172

util_is_mozilla
API function 172

util_is_url
API function 173

util_itoa
API function 173

util_later_than
API function 173

util_sh_escape
API function 174

util_snprintf
API function 174

util_sprintf
API function 175

util_strcasecmp
API function 175

util_strftime 237
API function 176

util_strncasecmp
API function 176

util_uri_escape
API function 177

util_uri_is_evil
API function 177

util_uri_parse
API function 178

util_uri_unescape
API function 178

util_vsnprintf
API function 178
Index 279

util_vsprintf
API function 179

utility routines 117

V
variables

magnus.conf 207

vars
field in request parameter 106

virtual attribute of the include command 241

VirtualServerFile
magnus.conf directive 211

vsnprintf, see util_vsnprintf 178

vsprintf, see util_vsprintf 179

W
weekday 237

wildcard patterns 233
file typing and 80
280 NSAPI Programmer’s Guide for Enterprise Server 4.0

NSAPI Programmer’s Guide for Enterprise Server 4.0
Contents
About This Book
1. Basics of Enterprise Server Operation

Configuration Files
magnus.conf
obj.conf
mime.types
How the Server Handles Requests from Clients
HTTP Basics
Steps in the Request Handling Process
Directives for Handling Requests

Using NSAPI to Write New Server Application Functions
2. Syntax and Use of Obj.conf

Server Instructions in obj.conf
Summary of the Directives

Object and Client Tags
The Object Tag
The Client Tag

Flow of Control in obj.conf
Init
AuthTrans
NameTrans
PathCheck
ObjectType
Service
AddLog
Error

Syntax Rules for Editing obj.conf
Order of Directives
Parameters
Case Sensitivity
Separators
Quotes
Spaces
Line Continuation
Path Names
Comments

3. Predefined SAFS for Each Stage in the Request Handling Process
Init Stage
AuthTrans Stage
NameTrans Stage
PathCheck Stage
ObjectType Stage
281

Service Stage
AddLog Stage
Error Stage

4. Creating Custom SAFs
The SAF Interface
SAF Parameters

pb (parameter block)
sn (session)
rq (request)

Result Codes
Creating and Using Custom SAFs

Write the Source Code
Compile and Link
Load and Initialize the SAF
Instruct the Server to Call the SAFs
Stop and Start the Server
Test the SAF

Overview of NSAPI C Functions
Parameter Block Manipulation Routines
Protocol Utilities for Service SAFs
Memory Management
File I/O
Network I/O
Threads
Utilities

Required Behavior of SAFs for Each Directive
Init SAFs
AuthTrans SAFs
NameTrans SAFs
PathCheck SAFs
ObjectType SAFs
Service SAFs
Error SAFs
AddLog SAFs

CGI to NSAPI Conversion
5. NSAPI Function Reference

NSAPI Functions (in Alphabetical Order)
6. Examples of Custom SAFsS

Examples in the Build
AuthTrans Example

Installing the Example
Source Code
282 NSAPI Programmer’s Guide for Enterprise Server 4.0

NameTrans Example
Installing the Example
Source Code

PathCheck Example
Installing the Example
Source Code

ObjectType Example
Installing the Example
Source Code

Service Example
Installing the Example
Source Code
More Complex Service Example

AddLog Example
Installing the Example
Source Code

Appendix A. Data Structure Reference
Privatization of Some Data Structures
session
pblock
pb_entry
pb_param
Session->client
request
stat
shmem_s
cinfo

Appendix B. Variables in magnus.conf
Server Information
Object Configuration File
Language Issues
DNS Lookup
Threads, Processes and Connections
Native Thread Pools
CGI
Error Logging and Statistic Collection
ACL
Security
Miscellaneous

Appendix C. MIME Types
Introduction
Loading the MIME Types File
283

Determining the MIME Type
How the Type Affects the Response
What Does the Client Do with the MIME Type?
Syntax of the MIME Types File
Sample MIME Types File

Appendix D. Wildcard Patterns
Wildcard Patterns
Wildcard Examples

Appendix E. Time Formats
Appendix F. Server-Parsed HTML Tags

Using Server-Parsed Commands
config
include
echo
fsize
flastmod
exec
Environment Variables in Commands

Appendix G. HyperText Transfer Protocol
Introduction
Requests

Request Method, URI, and Protocol Version
Request Headers
Request Data

Responses
HTTP Protocol Version, Status Code, and Reason Phrase
Response Headers
Response Data

Appendix H. Alphabetical List of NSAPI Functions and Macros
Appendix I. Alphabetical List of Directives in magnus.conf
Appendix J. Alphabetical List of Pre-defined SAFs
Index
284 NSAPI Programmer’s Guide for Enterprise Server 4.0

	About This Book
	Basics of Enterprise Server Operation
	Configuration Files
	magnus.conf
	obj.conf
	mime.types

	How the Server Handles Requests from Clients
	HTTP Basics
	Steps in the Request Handling Process
	Directives for Handling Requests

	Using NSAPI to Write New Server Application Functions

	Syntax and Use of Obj.conf
	Server Instructions in obj.conf
	Summary of the Directives

	Object and Client Tags
	The Object Tag
	Objects that Use the Name Attribute
	Object that Use the Ppath Attribute

	The Client Tag

	Flow of Control in obj.conf
	Init
	AuthTrans
	NameTrans
	How the Server Knows to Process Other Objects

	PathCheck
	ObjectType
	Setting the Type By File Extension
	Forcing the Type

	Service
	Service Examples
	Default Service Directive

	AddLog
	Error

	Syntax Rules for Editing obj.conf
	Order of Directives
	Parameters
	Case Sensitivity
	Separators
	Quotes
	Spaces
	Line Continuation
	Path Names
	Comments

	Predefined SAFS for Each Stage in the Request Handling Process
	Init Stage
	cache-init
	Note
	Parameters:
	Example

	cindex-init
	Parameters:
	Examples
	See Also

	dns-cache-init
	Parameters
	Example

	flex-init
	Parameters
	More on Log Format
	Examples
	See Also

	flex-rotate-init
	Parameters
	Example
	See Also

	init-cgi
	Parameters
	Example
	See Also

	init-clf
	Parameters
	Examples
	See Also

	init-uhome
	Parameters
	Examples
	See Also

	load-modules
	Parameters
	Examples

	load-types
	Parameters
	Examples
	See Also

	pool-init
	Parameters
	Example

	thread-pool-init
	Parameters
	Example
	See also

	AuthTrans Stage
	basic-auth
	Parameters
	Examples
	See Also

	basic-ncsa
	Parameters
	Examples
	See Also

	get-sslid
	Parameters

	NameTrans Stage
	assign-name
	Parameters
	Example

	document-root
	Parameters
	Examples
	See also

	home-page
	Parameters
	Examples

	pfx2dir
	Parameters
	Examples

	redirect
	Parameters
	Examples

	unix-home
	Parameters
	Examples
	See Also

	PathCheck Stage
	cert2user
	Parameters
	Examples

	check-acl
	Parameters
	Examples

	deny-existence
	Parameters
	Examples

	find-index
	Parameters
	Examples

	find-links
	Parameters
	Examples
	See Also

	find-pathinfo
	Parameters
	Examples

	get-client-cert
	Parameters
	Examples

	load-config
	Parameters
	Examples

	nt-uri-clean
	See Also

	ntcgicheck
	See Also

	require-auth
	Parameters
	Examples
	See Also

	ssl-check
	Parameters

	ssl-logout
	Parameters

	unix-uri-clean
	Parameters
	Examples
	See Also

	ObjectType Stage
	force-type
	Parameters
	Examples
	See Also

	shtml-hacktype
	Parameters
	Examples

	type-by-exp
	Parameters
	Examples
	See Also

	type-by-extension
	Parameters
	Examples
	See Also

	Service Stage
	add-footer
	Parameters
	Examples
	See Also

	add-header
	Parameters
	Examples
	See Also

	append-trailer
	Parameters
	Examples
	See Also

	imagemap
	Parameters
	Examples

	index-common
	Parameters
	Examples
	See Also

	index-simple
	Parameters
	Examples
	See Also

	key-toosmall
	Parameters
	Examples

	list-dir
	Parameters
	Examples

	make-dir
	Parameters
	Examples

	parse-html
	Parameters
	Examples

	query-handler
	Parameters
	Examples

	remove-dir
	Parameters
	Examples

	remove-file
	Parameters
	Examples

	rename-file
	Parameters
	Examples

	send-cgi
	Parameters
	Examples

	send-file
	Parameters
	Examples

	send-range
	Parameters
	Examples

	send-shellcgi
	Parameters
	Examples

	send-wincgi
	Parameters
	Examples

	upload-file
	Parameters
	Examples

	AddLog Stage
	common-log
	Parameters
	Examples
	See Also

	flex-log
	Parameters
	Examples
	See Also

	record-useragent
	Parameters
	Examples
	See Also

	Error Stage
	send-error
	Parameters
	Examples

	Creating Custom SAFs
	The SAF Interface
	SAF Parameters
	pb (parameter block)
	sn (session)
	rq (request)

	Result Codes
	Creating and Using Custom SAFs
	Write the Source Code
	Compile and Link
	Load and Initialize the SAF
	Instruct the Server to Call the SAFs
	Stop and Start the Server
	Test the SAF

	Overview of NSAPI C Functions
	Parameter Block Manipulation Routines
	Protocol Utilities for Service SAFs
	Memory Management
	File I/O
	Network I/O
	Threads
	Utilities

	Required Behavior of SAFs for Each Directive
	Init SAFs
	AuthTrans SAFs
	NameTrans SAFs
	PathCheck SAFs
	ObjectType SAFs
	Service SAFs
	Error SAFs
	AddLog SAFs

	CGI to NSAPI Conversion

	NSAPI Function Reference
	NSAPI Functions (in Alphabetical Order)
	CALLOC()
	Syntax
	Returns
	Parameters
	Example
	See also

	cinfo_find()
	Syntax
	Returns
	Parameters

	condvar_init()
	Syntax
	Returns
	Parameters
	See also

	condvar_notify()
	Syntax
	Returns
	Parameters
	See also

	condvar_terminate()
	Warning
	Syntax
	Returns
	Parameters
	See also

	condvar_wait()
	Syntax
	Returns
	Parameters
	See also

	crit_enter()
	Syntax
	Returns
	Parameters
	See also

	crit_exit()
	Syntax
	Returns
	Parameters
	See also

	crit_init()
	Warning
	Syntax
	Returns
	Parameters
	See also

	crit_terminate()
	Syntax
	Returns
	Parameters
	See also

	daemon_atrestart()
	Syntax
	Returns
	Parameters
	Example

	filebuf_buf2sd()
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_close()
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_getc()
	Syntax
	Returns
	Parameters
	See also

	filebuf_open()
	Syntax
	Returns
	Parameters
	Example
	See also

	filebuf_open_nostat()
	Syntax
	Returns
	Parameters
	Example
	See also

	FREE()
	Syntax
	Returns
	Parameters
	Example
	See also

	func_exec()
	Syntax
	Returns
	Parameters
	See also

	func_find()
	Syntax
	Returns
	Parameters
	Example
	See also

	log_error()
	Syntax
	Returns
	Parameters
	Example
	See also

	magnus_atrestart()
	Syntax
	Returns
	Parameters
	Example

	MALLOC()
	Syntax
	Returns
	Parameters
	Example
	See also

	net_ip2host()
	Syntax
	Returns
	Parameters

	net_read()
	Syntax
	Returns
	Parameters
	See also

	net_write()
	Syntax
	Returns
	Parameters
	Example
	See also

	netbuf_buf2sd()
	Syntax
	Returns
	Parameters
	See also

	netbuf_close()
	Syntax
	Returns
	Parameters
	See also

	netbuf_getc()
	Syntax
	Returns
	Parameters
	See also

	netbuf_grab()
	Syntax
	Returns
	Parameters
	See also

	netbuf_open()
	Syntax
	Returns
	Parameters
	See also

	param_create()
	Syntax
	Returns
	Parameters
	Example
	See also

	param_free()
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_copy()
	Syntax
	Returns
	Parameters
	See also

	pblock_create()
	Syntax
	Returns
	Parameters
	See also

	pblock_dup()
	Syntax
	Returns
	Parameters
	See also

	pblock_find()
	Syntax
	Returns
	Parameters
	See also

	pblock_findval()
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_free()
	Syntax
	Returns
	Parameters
	See also

	pblock_nninsert()
	Syntax
	Returns
	Parameters
	See also

	pblock_nvinsert()
	Syntax
	Returns
	Parameters
	Example
	See also

	pblock_pb2env()
	Syntax
	Returns
	Parameters
	See also

	pblock_pblock2str()
	Syntax
	Returns
	Parameters
	See also

	pblock_pinsert()
	Syntax
	Returns
	Parameters
	See also

	pblock_remove()
	Syntax
	Returns
	Parameters
	See also

	pblock_str2pblock()
	Syntax
	Returns
	Parameters
	See also

	PERM_CALLOC()
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_FREE()
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_MALLOC()
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_REALLOC()
	Warning
	Syntax
	Returns
	Parameters
	Example
	See also

	PERM_STRDUP()
	Syntax
	Returns
	Parameters
	See also

	protocol_dump822()
	Syntax
	Returns
	Parameters
	See also

	protocol_set_finfo()
	Syntax
	Returns
	Parameters
	See also

	protocol_start_response()
	Syntax
	Returns
	Parameters
	Example
	See also

	protocol_status()
	Syntax
	Returns
	Parameters
	Example
	See also

	protocol_uri2url()
	Syntax
	Returns
	Parameters
	See also

	protocol_uri2url_dynamic()
	Syntax
	Returns
	Parameters
	See also

	REALLOC()
	Warning
	Syntax
	Returns
	Parameters
	Example
	See also

	request_header()
	Syntax
	Returns
	Parameters
	See also

	request_stat_path()
	Syntax
	Returns
	Parameters
	Example
	See also

	request_translate_uri()
	Syntax
	Returns
	Parameters
	See also

	session_maxdns()
	Syntax
	Returns
	Parameters

	shexp_casecmp()
	Syntax
	Returns
	Parameters
	See also

	shexp_cmp()
	Syntax
	Returns
	Parameters
	Example
	See also

	shexp_match()
	Syntax
	Returns
	Parameters
	See also

	shexp_valid()
	Syntax
	Returns
	Parameters
	See also

	STRDUP()
	Syntax
	Returns
	Parameters
	Example
	See also

	system_errmsg()
	Syntax
	Returns
	Parameters
	See also

	system_fclose()
	Syntax
	Returns
	Parameters
	Example
	See also

	system_flock()
	Syntax
	Returns
	Parameters
	See also

	system_fopenRO()
	Syntax
	Returns
	Parameters
	See also

	system_fopenRW()
	Syntax
	Returns
	Parameters
	Example
	See also

	system_fopenWA()
	Syntax
	Returns
	Parameters
	See also

	system_fread()
	Syntax
	Returns
	Parameters
	See also

	system_fwrite()
	Syntax
	Returns
	Parameters
	See also

	system_fwrite_atomic()
	Syntax
	Returns
	Parameters
	Example
	See also

	system_gmtime()
	Syntax
	Returns
	Parameters
	Example
	See also

	system_localtime()
	Syntax
	Returns
	Parameters
	See also

	system_lseek()
	Syntax
	Returns
	Parameters
	See also

	system_rename()
	Syntax
	Returns
	Parameters

	system_ulock()
	Syntax
	Returns
	Parameters
	See also

	system_unix2local()
	Syntax
	Returns
	Parameters
	See also

	systhread_attach()
	Syntax
	Returns
	Parameters
	See also

	systhread_current()
	Syntax
	Returns
	Parameters
	See also

	systhread_getdata()
	Syntax
	Returns
	Parameters
	See also

	systhread_newkey()
	Syntax
	Returns
	Parameters
	See also

	systhread_setdata()
	Syntax
	Returns
	Parameters
	See also

	systhread_sleep()
	Syntax
	Returns
	Parameters
	See also

	systhread_start()
	Syntax
	Returns
	Parameters
	See also

	systhread_timerset()
	Syntax
	Returns
	Parameters
	See also

	util_can_exec()
	Unix only
	Syntax
	Returns
	Parameters
	See also

	util_chdir2path()
	Syntax
	Returns
	Parameters

	util_chdir2path()
	Syntax
	Returns
	Parameters

	util_cookie_find()
	Syntax
	Returns
	Parameters
	See also

	util_cookie_next()
	Syntax
	Returns
	Parameters
	See also

	util_env_find()
	Syntax
	Returns
	Parameters
	See also

	util_env_free()
	Syntax
	Returns
	Parameters
	See also

	util_env_replace()
	Syntax
	Returns
	Parameters
	See also

	util_env_str()
	Syntax
	Returns
	Parameters
	See also

	util_getline()
	Syntax
	Returns
	Parameters
	See also

	util_hostname()
	Syntax
	Returns
	Parameters

	util_is_mozilla()
	Syntax
	Returns
	Parameters
	See also

	util_is_url()
	Syntax
	Returns
	Parameters
	See also

	util_itoa()
	Syntax
	Returns
	Parameters

	util_later_than()
	Syntax
	Returns
	Parameters
	See also

	util_sh_escape()
	Syntax
	Returns
	Parameters
	See also

	util_snprintf()
	Syntax
	Returns
	Parameters
	See also

	util_sprintf()
	Syntax
	Returns
	Parameters
	Example
	See also

	util_strcasecmp()
	Syntax
	Returns
	Parameters
	See also

	util_strftime()
	Syntax
	Returns
	Parameters
	See also

	util_strncasecmp()
	Syntax
	Returns
	Parameters
	See also

	util_uri_escape()
	Syntax
	Returns
	Parameters
	See also

	util_uri_is_evil()
	Syntax
	Returns
	Parameters
	See also

	util_uri_parse()
	Syntax
	Returns
	Parameters
	See also

	util_uri_unescape()
	Syntax
	Returns
	Parameters
	See also

	util_vsnprintf()
	Syntax
	Returns
	Parameters
	See also

	util_vsprintf()
	Syntax
	Returns
	Parameters
	See also

	Examples of Custom SAFsS
	Examples in the Build
	AuthTrans Example
	Installing the Example
	Source Code

	NameTrans Example
	Installing the Example
	Source Code

	PathCheck Example
	Installing the Example
	Source Code

	ObjectType Example
	Installing the Example
	Source Code

	Service Example
	Installing the Example
	Source Code
	More Complex Service Example

	AddLog Example
	Installing the Example
	Source Code

	Data Structure Reference
	Privatization of Some Data Structures
	session
	pblock
	pb_entry
	pb_param
	Session->client
	request
	stat
	shmem_s
	cinfo

	Variables in magnus.conf
	Note
	Server Information
	Address
	Concurrency
	MtaHost
	Port
	Syntax
	Default
	Examples

	ServerID
	ServerName
	Syntax
	Default
	Examples

	ServerRoot
	Syntax

	User
	Syntax
	Default
	Examples

	VirtualServerFile

	Object Configuration File
	LoadObjects
	Syntax
	Default
	Examples

	RootObject
	Syntax
	Default
	Examples

	Language Issues
	AcceptLanguage
	Default

	AdminLanguage
	ClientLanguage
	DefaultLanguage

	DNS Lookup
	AsyncDNS
	DNS
	Syntax
	Default
	Example

	Threads, Processes and Connections
	BlockingListenSockets
	KeepAliveTimeout
	KernelThreads
	ListenQ
	MaxKeepAliveConnections
	Default

	MaxProcs
	PostThreadsEarly
	RcvBufSize
	RqThrottle
	Default

	RqThrottleMinPerSocket
	SndBufSize
	StackSize
	TerminateTimeout

	Native Thread Pools
	NativePoolStackSize
	NativePoolMaxThreads
	Default

	NativePoolMinThreads
	Default

	NativePoolQueueSize

	CGI
	CGIExpirationTimeout
	CGIWaitPid (UNIX Only)

	Error Logging and Statistic Collection
	DaemonStats (Unix Only)
	ErrorLog
	Syntax
	Default
	Examples

	LogVerbose
	PidLog
	Syntax
	Default
	Examples

	ACL
	ACLFile
	Syntax
	Example

	Security
	Chroot (Unix only)
	IMPORTANT
	Syntax
	Default
	Examples

	Ciphers
	Syntax

	Security
	Syntax
	Default
	Example

	ServerCert
	Syntax

	ServerKey
	Syntax

	SSLCacheEntries
	SSLClientAuth
	Syntax

	SSLSessionTimeout
	Syntax

	SSL2
	Syntax
	Default
	Example

	SSL3
	Syntax
	Default
	Example

	SSL3Ciphers
	Syntax

	SSL3SessionTimeout
	Syntax

	Miscellaneous
	Umask (UNIX only)

	MIME Types
	Introduction
	Loading the MIME Types File
	Determining the MIME Type
	How the Type Affects the Response
	What Does the Client Do with the MIME Type?
	Syntax of the MIME Types File
	Sample MIME Types File

	Wildcard Patterns
	Wildcard Patterns
	Wildcard Examples

	Time Formats
	Server-Parsed HTML Tags
	Using Server-Parsed Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	Environment Variables in Commands

	HyperText Transfer Protocol
	Introduction
	Requests
	Request Method, URI, and Protocol Version
	Request Headers
	Request Data

	Responses
	HTTP Protocol Version, Status Code, and Reason Phrase
	Response Headers
	Response Data

	Alphabetical List of NSAPI Functions and Macros
	Alphabetical List of Directives in magnus.conf
	Alphabetical List of Pre-defined SAFs
	Index

