This file was last modified on 8/12/99

ADOUL THIS BOOK ...ttt e 3
Chapter 1 Using Servlets and JavaServerPagesccceevvevveervesseeneesinesnnnnnns 5
SEIVIBLS ettt bbb sne e 6
JAVASEIVET PAQES ..oiieviieieiie et cie e stee e stee sttt st ae e st e s e e e e nte e e e e enes 6
What Does the Server Need to Run Servlets and JSP? ... 7
Serving SErvIets and JSPocui i 8
Using the Server Manager Interface to Specify Servlet Behavior and Attributes 9
Activating ServIets and JSPccceiiriiiie e 9
Configuring General Servlet Propertiescccoueeieiieiienie e 10
Registering Servlet DIr€CIONEScvvccveieiiiiiie e cse e 11
Registering Individual SErVIEtS ..ot 12
Specifying Servlet Virtual Pathsc.ccccviiiiiiie s 13
Configuring JRE/IDK Pathsocoiiiiiiiii e 16
Deleting VErsion FileS ..o iiieiie ettt 18
CoNFIGUIING JVIM ettt sttt sttt seeenee 19
Chapter 2 Servlet and JSP EXAMPIESccoeevieiieiieiie e ee e 21
Examples Shipped with Enterprise Server 4.0ccccccoiiiiiiiiiiinieeeeee s 21
SEIVIEL EXAMPIES ..uveiiiiiie ettt ettt sttt eennean 22

A Simple Serviet EXamMPIeooiiiiiiiee e e 22

Example of a Servlet that Parses Input Parametersccccocevvevieiienieeninens 24
JSP EXAMIPIES ..ttt 29

JSP that Accesses the Request ODJECTcvvveiiviciie e 29

JSP that Responds to a Form and Uses Java Beansccccccceevieniriecnnn 31

Contents i

AppendiX A SESSION MANAJEISc.cccvviveeieeieeseesie e e eseeseesree e e esseesneeeseeenaee e 39

SESSION OVEIVIEWviiiciiiecciiie e cieee sttt e s stee s tte e st e e s ste e e s te e e s ae e e staeesteeesreeaesaeeesneaeas 39
Specifying a SeSSION MaNAQETccccveiveireiie e sree e ere e s nnes 40
SIMPIESESSIONMANAGETooiviiiiiiiie e 41

PAramMeLEIS ..o 41

Enabling SimpleSessionManagerccocoieieiniiiieeiee e 41

Source Code for SImpleSessioNMaNagerc.ccovveeieareerie e 42
MMaPSESSIONMANAGETcvveeeeeiiesieesieesieeeies e e ste e et eete e e e ssaesneeeseeesreesneesneeenes 42

ParamELEIS ..eiiii et 43

Enabling MMapSesSioNMaNaQErccevveiieiieeieeseesieseeeiee e e ssee e seeenenes 43
How Do Servlets Access SESSION Data?ccccceevvveiiiieciiec e 44
Appendix B Servlet Settings in ObJ.CONFcccoooviiiiiiiii e, 45
Directives for ENabling SErVIEtS ..o 45
Directives for Registered Servlet DIF€CIONESceevvviierieererinieeie e 46
S SRR 47
Appendix C servlets.properties and rules.propertiesccccovcvvvivevvreniinnne. 49
1TV (1 o] o] o 1= 1= SRR 49
L] Lo o]0 o 1= TSSOV S TR 50
Appendix D JVM Configurationcooiiiiiiiiie e 53
Appendix E Remote Servlet DEDUGQINGcceovveviiiiiiiiiiieie e 55
Appendix F Remote Servilet Profiling ..o 57
AppendiXx G API CIarifiCationscccocvvviiiiieeieiiie e 59
HttpULilS.getREQUESTURL() ..oveeiieeieieieie sttt 59
HttpSession.setMaxInactivelnterval()cccoocvveviiieeviiie e 60
GenericServlet.getInitParameter() and getinitParameterNames()c..c...... 60
ServletContext.getCoNIEXL() ..vivveiieiie et 61
RequestDispatcher.forward() and include()cccocereiiieiiiiiieieneeeeeee 62
Request.getinputStream() and getReader()c.cocevvvevieiieeiieevee s e 63
L0 L= SRS 65

ii Programmer’s Guide to Servlets in Enterprise Server 4.0

About This Book

This book was last updated 8/12/99.

This book discusses how to enable and install Java servlets and
JavaServerPages (JSP) in Enterprise Server 4.0.

This book has the following chapters and appendices:

Chapter 1, “Using Servlets and JavaServerPages.”

This chapter discusses how to enable and install servlets and
JavaServerPages in Enterprise Server 4.0. It explains how to specify settings
for servlets and for the JRE, JDK and JVM by using the Server Manger
interface or by editing configuration files.

Chapter 2, “Servlet and JSP Examples.”

This chapter discusses example servlets and JSP.

Appendix A, “Session Managers.”

This appendix discusses the session managers provided with Enterprise
Server and gives an overview of a sample session manager that you can use
to define your own session managers.

Appendix B, “Servlet Settings in obj.conf.”

This appendix discusses how the configuration file obj . conf changes
depending on the settings for servlets and JSP.

Appendix C, “servlets.properties and rules.properties.”

This appendix discusses the servl et s. properti es file, which contains
configuration information for servlets, and the r ul es. properti es file
which defines virtual paths for servlets.

Appendix D, “JVM Configuration.”

This appendix discusses which configuration files to edit if you want to
manually specify JVM configuration information.

Appendix E, “Remote Servlet Debugging.”

This appendix discusses how to enable remote debugging for servlets.

Appendix F, “Remote Servlet Profiling.”
This appendix discusses how to enable remote profiling for servlets.

= Appendix G, “API Clarifications.”

This chapter discusses methods in the Servlets API that behave marginally
differently in Enterprise Server than specified in the Sun Microsystems’
Servlets APl documentation or where the behavior documented by Sun
Microsystems is ambiguous.

4 Programmer’s Guide to Enterprise Server 4.0

Chapter

Using Servlets and JavaServerPages

Enterprise Server 4.0 supports servlets and JavaServer Pages (JSP). This chapter
gives a brief overview of servlets and JavaServer Pages and discusses how to
enable and configure them in Enterprise 4.0.

The sections in this chapter are:

Servlets

JavaServer Pages

What Does the Server Need to Run Servlets and JSP?
Serving Servlets and JSP

Using the Server Manager Interface to Specify Servlet Behavior and
Attributes

Activating Servlets and JSP
Configuring General Servlet Properties
Registering Servlet Directories
Registering Individual Servlets
Specifying Servlet Virtual Paths
Configuring JRE/JDK Paths

Deleting Version Files

Configuring JVM

Chapter 1, Using Servlets and JavaServerPages 5

Servlets

Servlets

Java servlets are server-side Java programs that web servers can run to generate
content in response to a client request in much the same way as CGI programs
do. Servlets can be thought of as applets that run on the server side without an
interface. Servlets are invoked through URL invocation

Netscape Enterprise Server 4.0 includes support for JavaSoft's Servlet API at the
level of the Java Servlet Development Kit (JSDK) 2.1.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information
about using the Java Servlet API, see the documentation provided by Sun
Microsystems at:

http://ww. javasoft.conf products/servlet/index. htm

Netscape Enterprise Server 4.0 includes all the files necessary for developing
Java Servlets. The servl ets. j ar file is in the ES4.0 installation directory at:

/ bin/https/jar

When compiling servlets, make sure the servl ets. jar file is accessible
variable to your Java compiler.

JavaServer Pages

Enterprise Server 4.0 supports JavaServerPages (JSP) to the level of JSP API 0.92
compliance.

A JavaServerPage (JSP) is a page much like an HTML page, that can be viewed
in a web browser. However, as well as containing HTML tags, it can include a
set of JSP tags that extend the ability of the web page designer to incorporate

dynamic content in a page. These tags provide functionality such as displaying
property values and using simple conditionals.

One of the main benefits of JavaServer Pages is that, like HTML pages, they do
not need to be compiled. The web page designer simply writes a page that uses
HTML and JSP tags, and puts it on their web server. The web page designer
does not need to learn how to define Java classes or use Java compilers.

JSP pages can access full Java functionality in the following ways:
= by embedding Java code directly in scriptlets in the page

6 Programmer’s Guide to Servlets in Enterprise Server 4.0

What Does the Server Need to Run Servlets and JSP?

= by accessing Java beans
= by using server-side tags that include Java servlets

Both beans and servlets are Java classes that need to be compiled, but they can
be defined and compiled by a Java programmer who then publishes the
interface to the bean or the servlet. The web page designer can access a pre-
compiled bean or servlet from a JSP page without having to do any compiling
themselves.

For information about creating JavaServer Pages, see Sun Microsystem’s
JavaServer Pages 0.92 spec in the build in the manuals/https/servlets/jsp092
subdirectory .

For information about Java Beans, see Sun Microsystem'’s JavaBeans web page
at:

http://ww.javasoft.conf beans/i ndex. ht m

What Does the Server Need to Run Servlets

and JSP?

Note

Enterprise Server 4.0 includes the Java Runtime Environment (JRE) but not the
Java Development Kit (JDK). The server can run servlets using the JRE, but it

needs the JDK to run JSP. If you want to run JSP, you must tell the Enterprise

Server to use a custom JDK.

Enterprise Server 4.0+ requires you to use official versions of JDK, with
different platforms requiring different versions. For example, Sun Solaris
requires JDK1.2 or higher; HP-UX requires JDK 1.1 (C.01.17.01 or any higher
1.1 version); and Windows NT requires a JDK of 1.2.2 or higher. Check the
Installation and Migration Guide and the latest release notes for updates on
required JDK versions.

On Sun Solaris, the JRE included is the JRE 1.2.2 reference implementation from
JavaSoft. For performance, it is recommended to use the latest SunSoft
production release of JDK, currently 1.2.1_03.

JDK 1.2 (and other JDK versions) are available from Sun Microsystems at:

http://ww.javasoft.conl products/jdk/1.2/

You can specify the path to the JDK in either of the following ways:

Using Servlets and JavaServerPages 7

Serving Servlets and JSP

= You can specify the path during the server installation process.

When you install Enterprise Server 4.0, one of the dialog boxes in the
installation process asks if you want to use a custom Java Development Kit
(JDK), and if so, you can specify the path to it.

= You can specify it after the server is installed.

To specify the path to the JDK, use the “Configure JRE/IDK Paths” page in
the Servlets tab of the Server Manager, as discussed in the section
"Configuring JRE/JDK Paths."

Whether you specify the path to the JDK during installation or later, the path is
the folder in which you installed the JDK.

Serving Servlets and JSP

Enterprise Server 4.0 includes an appropriate version of the Java runtime
environment (JRE) for running servlets. For the server to be able to serve JSP,
you must specify a path to a Java Development Kit (JDK) as discussed in the
section "What Does the Server Need to Run Servlets and JSP?."

For the server to serve servlets and JSP, servlet activation must be enabled. (See
the section "Activating Servlets and JSP" for details.)

When the servlet engine is activated, you have a choice of two ways to make a
servlet accessible to clients:

= Put the servlet class file in a directory that has been registered with the
Enterprise Server as a servlet directory. For more information, see
"Registering Servlet Directories."

= Define a servlet virtual path for the servlet. In this case, the servlet class can
be located anywhere in the file system or even reside on a remote machine.
For more information, see "Specifying Servlet Virtual Paths."

No special steps are needed to enable JSP pages other than making sure that
JSP is activated on the Enterprise Server. So long as JSP activation is enabled,
the Enterprise Server treats all files with a . j sp extension as JavaServer Pages.
(Do not put JSP files in a registered servlets directory, since the Enterprise
Server expects all files in a registered servlet directory to be servlets.)

8 Programmer’s Guide to Servlets in Enterprise Server 4.0

Using the Server Manager Interface to Specify Servlet

In detail, to enable the Netscape Enterprise Server to serve servlets and JSP
pages, do the following:

1.

2.

Activating Servlets and JSP. (This is the only step needed to enable JSP.)
Configuring General Servlet Properties

Registering Servlet Directories

Registering Individual Servlets if Needed

Specifying Servlet Virtual Paths if Desired

Configuring JVM if Necessary

Using the Server Manager Interface to Specify
Servlet Behavior and Attributes

In the Enterprise Server 4.0 Server Manager interface, you can use the Servlets
tab to specify settings for servlets. For information about using the interface for
working with servlets, see the following subsections in the "Servlets Tab"
section of Appendix F, "The Enterprise Server User Interface" in the "Enterprise
Server Administration Guide:"

The Enable/Disable Servlets Page

Configure JRE/JDK Page

The Servlet Directory Page

The Configure Global Attributes for Servlets Page
The Configure Servlet Attributes Page

The Configure Servlet Virtual Path Translation Page
The Configure JVM Attributes Page

The Delete Version Files Page

Activating Servlets and JSP

To enable and disabled servlets and JSP in Enterprise Server 4.0, use the
Servlets>Enable/Disable Servlets page in the Server Manager interface.

Using Servlets and JavaServerPages 9

Configuring General Servlet Properties

If servlets are enabled, JSP can be enabled or disabled. However, if you disable
servlets, JSP is automatically also disabled. In this case, if you enable servlets
later, you will need to re-enable JSP also if desired.

To enable servlets programmatically, add the following lines to obj . conf .
These directives first load the shared library containing the servlet engine,
which is in NSServl et Pl ugi n. dI I on Windows NT or NSSer vl et Pl ugi n. so on
Unix. Then they initialize the servlet engine.

Init shlib="server_root/bin/https/bin/NSServletPlugin.dll/so"
funcs="NSServl et Earl yl ni t, NSSer vl et Lat el ni t, NSSer vl et NaneTr ans, NSSer vl e
tService" shlib_flags="(global|now)" fn="Ioad-nodul es"

Init Earlylnit="yes" fn="NSServletEarlylnit"

Init Latelnit="yes" fn="NSServletlLatelnit"

In the default object in obj . conf, add the following NameTr ans directive:

NameTr ans fn="NSServl et NaneTr ans" nane="servlet"

By default, regardless of whether servlets are enabled or disabled, the file
obj . conf contains additional objects with names such as servl et, j sp, and
Ser vl et ByExt . Do not delete these objects. If you delete them, you will no
longer be able to activate servlets through the Server Manager.

Configuring General Servlet Properties

You can specify the following servlet properties:

= Startup Servlets -- servlets to load when the Enterprise Server starts up.

= Session Manager -- the session manager for servlets, if applicable. For more
information about the session manager, see Appendix A, “Session
Managers.”

= Reload Interval -- the time period that the server waits before re-loading
servlets and JSPs if they have changed on the server. The default value is 5.

You can set these attributes interactively in the Servlets>Configure General
Servlet Properties page in the Server Manager interface. Alternatively, you can
edit the configuration file servl et . properti es in the server’s config
directory.

The following code shows an example of the settings in servl et . properti es:

10 Programmer’s Guide to Servlets in Enterprise Server 4.0

Registering Servlet Directories

General properties:

servl ets. startup=hello

servl ets.config.rel oadl nterval =5

servl ets. config. docRoot =C: / Net scape/ Ser ver 4/ docs

servl et s. sessi onngr =com net scape. server. http. sessi on. Si npl eSessi onManager

Registering Servlet Directories

One of the ways to make a servlet accessible to clients is to put it into a
directory is registered with the Enterprise Server as a servlet directory. Servlets
in registered servlet directories are dynamically loaded when needed. The
server monitors the servlet files and automatically reloads them on the fly as
they change.

For example, if the Si npl eSer vl et . cl ass servlet is in the servl et
subdirectory of the server’'s document root directory, you can invoke the servlet
by pointing the web browser to:

http://your_server/servl et/ Si npl eServl et

You can register any number of servlet directories for the Enterprise Server.
Initially, the Enterprise Server has a single servlet directory, which is
server_root/ docs/ servl et/ (For example, d: / net scape/ ser ver 4/ docs/
servl et.)

The Enterprise Server expects all files in a registered servlet directory to be
servlets. The server treats any files, including applets, in that directory that have
the . cl ass extension as servlets. The Enterprise Server does not correctly serve
other files, such as HTML files or JSPs, that reside in that directory.

The server can have multiple servlet directories. You can map servlet
directories to virtual directories if desired. For example, you could specify that
http:// poppy. my_donai n. coni pr oduct s/ invokes servlets in the directory
server_root/ docs/ servl et/january/ products/servlets/.

To register servlet directories and to specify their URL prefixes, use the
Servlets>Servlet Directory page in the interface.

Alternatively, you can register servlet directories by adding appropriate
NanmeTr ans directives to the default object in the file obj . conf, such as:

NanmeTrans fn="pfx2dir" fron"/servlets"
di r="d:/ net scape/ server 4/ docs/ servl et/j anuary/ product s/ servl ets/"
name="Ser vl et ByExt "

Using Servlets and JavaServerPages 11

Registering Individual Servlets

Registering Individual Servlets

The Enterprise Server treats any file in a registered servlet directory as a servlet.
There is no need to register individual servlets that reside in these directories
unless either of the following criteria apply:

= The servlet takes input parameters that are not passed through the request
URL.

< You want to set up virtual URLs for the servlet.

If either of these conditions is true, register the individual servlet by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface.
Alternatively you can edit the file servl et . properti es to add an entry for the
servlet.

When registering an individual servlet, specify the following attributes:

= Servlet Name -- The Enterprise Server uses this value as a servlet identifier
to internally identify the servlet. (This identifier is not part of the URL that is
used to invoke the servlet, unless by coincidence the identifier is the same
as the class code name.)

= Servlet Code (class name) -- the name of the class file. You do not need to
specify the . cl ass extension.

= Servlet Classpath -- This is the absolute pathname or URL to the directory or
zip/jar file containing the servlet. The classpath can point anywhere in the
file system. The servlet classpath may contain a directory, a . jar or.zip
file, or a URL to a directory.(You cannot specify a URL as a classpath for a
zip or jar file.)

If the servlet classpath is not a registered servlet directory, you must
additionally provide a servlet virtual path for it (as discussed in" Specifying
Servlet Virtual Paths") to make the servlet accessible to clients.

Enterprise Server supports the specification of multiple directories, jars,
zips, and URLs in the servlet classpath.

= Servlet Args -- a comma delimited list of additional arguments for the servlet
if required.

For example, in Figure 1.1, the Servlets>Configure Servlet Attributes page of the
Server Manager interface shows configuration information for a servlet whose
class file buynowl A resides in the directory D: / Net scape/ ser ver 4/ docs/

12 Programmer’s Guide to Servlets in Enterprise Server 4.0

Specifying Servlet Virtual Paths

servl et/ buy/ . (Note that the final / is omitted in the interface.) This servlet is
configured under the name BuyNowSer vl et . It takes additional arguments of
ar gl=45, ar g2=onl i ne, ar g3="qui ck shoppi ng".

Ibrane Serwlek: |'\.- ciMuri-areet B |

Nl | Mamam B owGaedat
Sarwlst (ot (class noemsa]) BsHas1h
Tyt (hanapathy (G Tenticapaiiesss el ddivkavbeg
harabat Aegai [erglm i, g rpmariee, gl guic ghaaping”

EJ Rammwe

Figure 1.1 Configuring attributes for an individual servlet

The following code shows an example of the configuration information for the
same servlet in servl et. properties:

servl et. BuyNowSer vl et . cl asspat h=D: / Net scape/ server 4/ docs/ servl et/ buy
servl et. BuyNowSer vl et . code=BuyNowlA
servl et. BuyNowSer vl et . i ni t Args=ar g1=45, ar g2=onl i ne, ar g3="qui ck shoppi ng"

Note that you can specify multiple values as the servlet classpath if needed.

Specifying Servlet Virtual Paths

One way of making servlets available to clients is to put them in registered
servlet directories. Another way is to define servlet virtual paths for individual
servlets. For example, you could specify that the URL

http://poppy. ny_domai n. coni pl ans/ pl anl

invokes the servlet defined in the directory

server_root/ docs/ servl et s/ pl ans/ r el easeAl pl anP2Ver si onlA. cl ass

You can set up servlet virtual paths for servlets that reside anywhere, be it on a
local or remote file system, and be it in or out of a registered servlet directory.

Using Servlets and JavaServerPages 13

Specifying Servlet Virtual Paths

To specify a servlet virtual path, use the Servlets>Configure Servlet Virtual Path
Translation page in the Server Manager interface. In this page, specify the
virtual path name and the servlet name. You can alternatively manually edit the
rul es. properties configuration file to add a servlet virtual path. Only
servlets for which a virtual path has been set up can use initial arguments

(See “GenericServlet.getInitParameter() and getinitParameterNames()” for
iinformation about initial arguments.)

Before using a servlet virtual path, a servlet identifier must be added for the
servlet in the Servlets>Configure Servlet Attributes page of the interface (or in
the servl et s. properti es configuration file).

Virtual Serviet Path Example

This example discusses how to specify that the logical URL:
http://poppy. ny_donui n. cont pl ans/ pl anl

invokes the servlet defined in

server_root/ docs/ servl et/ pl ans/rel easeAl pl anP2Ver si onlA. cl ass.
1. Specify the servlet identifier, class file, and class path.

In the Servlets>Configure Servlet Attributes page in the interface, do the
following:

= in the Servlet Name field, enter an identifier for the servlet, such as pl an1A.
(Notice that this is not necessarily the same as the class file name).

= in the Servlet Code field, enter the name of the class file, which is
pl anP2Ver si on1A. Don't specify any directories. The . cl ass extension is
not required.

= in the Servlet Class Path field, enter the absolute path name for the
directory, jar or zip file where the servlet class file resides, or enter a URL
for a directory. In this example, you would enter server_root/ docs/
servl et/ pl ans/ rel easeA. (For example: D: / net scape/ ser ver 4/ docs/
servl et/ pl ans/rel easeA)

= in the Servlet Args field, enter the additional arguments that the servlet
needs, if any. (This example does not use extra arguments.)

Figure 1.2 shows the settings in the interface.

14 Programmer’s Guide to Servlets in Enterprise Server 4.0

Specifying Servlet Virtual Paths

Save the changes.

Configure Serviet Arnbutes

- e AURD B R A OTT DTE
H‘Hlll‘-"d-l\ll-lﬂ"“ ;I I apnn? =g a1 mminciey dree

Sarviat Hama [panLa
| P———y Ty ——— | T
tarslat Dlesspathi 10 Heiprapa pmreandideey ner lei) pd an g el sy miy
Sarelat frmger |

k] Aemew |

Figure 1.2 Specifying the servlet name, code, and class path

To make this change programmatically, add the following lines to the
configuration file ser vl et . properti es:

servl et. pl anlA. cl asspat h=D: / Net scape/ server 4/ docs/ servl et/ pl ans/
rel easeA/

servl et. pl anlA. code=pl anP2Ver si on1A
2. Specify the virtual path for the servlet.

In the Servlets>Configure Servlet Virtual Path Translations page, do the
following:

= In the Virtual Path field, enter the virtual path name. Note that the server
name is implied as a prefix, so in this case you would only need to enter /
pl ans/ pl anl to specify the virtual path htt p: // poppy. ncom com pl ans/
pl anl.

= In the Servlet field, enter the identifier for the servlet that is invoked by this
virtual path. This is the servlet identifier that you specified in the Configure
Servlet Attributes page, which in this case is pl an1A.

Save the changes.

Figure 1.3 shows the settings in the interface.

Using Servlets and JavaServerPages 15

Configuring JRE/IDK Paths

Configure Serviet Virbual Path Transiation

- D BASND B cew T PR bt
Chaean 'l‘rh.llPlH‘lI:rlh-ill swmithag --I P e -

Firtusl Padh F plariiplasa
| " TP

EI Fhurnl-lu|

Figure 1.3 Adding a virtual path

To do this programmatically, add the following line to rul es. properti es:

/ pl ans/ pl anl=pl an1A

After this virtual servlet path has been established, if a client sends a request to
the server for the URL htt p://poppy. ny_domai n. conl pl ans/ pl anl, the
server sends back the results of invoking the servlet in server_root/ docs/
servl et/ pl ans/ rel easeA/ pl an2PVer si onlA. cl ass.

Configuring JRE/JIDK Paths

When you install Enterprise Server 4.0, you can choose to install the Java
Runtime Environment (JRE) or you can specify a path to the Java Development
Kit (JDK).

The server can run servlets using the JRE, but it needs the JDK to run JSP. The
JDK is not bundled with the Enterprise Server, but you can download it for free
from Sun Microsystems at:

http://ww.javasoft.conl products/jdk/1. 2/

Enterprise Server 4.0+ requires you to use an official version of JDK1.2 on
Solaris and NT. On HP, AIX and IRIX use JDK 1.1.

Regardless of whether you choose to install the JRE or specify a path to the JDK
during installation, you can tell the Enterprise Server to switch to using either
the JRE or JDK at any time, by using the “Configure JRE/JDK Paths” page in the
Servlets tab. You can also change the path to the JDK in this page.

16 Programmer’s Guide to Servlets in Enterprise Server 4.0

Configuring JRE/IDK Paths

This page has the following fields:

Change JRE or JDK
Select either the JRE or JDK radio button as desired.

Path

Enter the path for the JRE or JDK. This is the directory where you installed
the JRE or JDK.

Classpath

The class path includes the paths to the directories and jar files needed to
run the servlet engine, the servlet examples, and any other paths needed by
servlets that you add. Values are separated by semicolons. You can add new
values to the existing class path, but don’t delete the existing value since it
includes paths that are essential for servlet operation.

It is easiest to use the Server Manager interface to switch between the JRE and
the JDK, but you can also make the change programmatically, as follows:

On Unix:
Edit the file server_root/https-adnserv/start.jre.

If the server is currently using the JRE, this file has a variable NSES_JRE. To
enable the server to use a JDK, add the variable NSES_JDK whose value is
the JDK directory. You'll also need to change the value of the NSES_JRE
variable.

If you're using JDK 1.2 or greater, NSES_JDK should point to the installation
directory for the JDK, while NSES_JRE should point to the JRE directory in
the installation directory for JDK (that is, j dk_di r/jre). For JDK 1.1.x,
NSES_JDK and NSES_JRE should both point to the installation directory for
the JDK.

On Windows NT:
Add the path to the Java libraries to the ext r apat h setting in magnus. conf .

Edit the NSES_JDK and NSES_JRE variables in the registry
HKEY_LOCAL_MACHI NE/ SOFTWARE/ Net scape/ Ent er pri se/ 4. 0/ . If the
server is enabled to use the JDK, both these variables are needed. If the
server is to use the JRE, only the NSES_JRE variable should be set. If you're
using JDK 1.2 or greater, NSES_JDK should point to the installation directory
for the JDK, while NSES_JRE should point to the JRE directory in the

Using Servlets and JavaServerPages 17

Deleting Version Files

installation directory for JDK (that is, j dk_di r/jre). For JDK 1.1.x,
NSES_JDK and NSES_JRE should both point to the installation directory for
the JDK.

Deleting Version Files

The server uses two directories to cache information for JavaServerPages (JSP)
and servlets:

* ClassCache

When the server serves a JSP page, it creates a .java and a .class file
associated with the JSP and stores them in the JSP class cache, in a directory
structure under the ClassCache directory.

* SessionData

If the server uses the MMapSessionManager session manager, it stores
persistent session information in the SessionData directory. (For more
information about session managers, see Appendix A, “Session Managers.”)

Each cache has a ver si on file containing a version number that the server uses
to determine the structure of the directories and files in the caches. You can
clean out the caches by simply deleting the version file.

When the server starts up, if it does not find the version files, it deletes the
directory structures for the corresponding caches and re-creates the version
files. Next time the server serves a JSP page, it recreates the JSP class cache. The
next time the server serves a JSP page or servlet while using

MVapSessi onManager session manager, it recreates the session data cache.

If a future upgrade of the server uses a different format for the caches, the
server will check the number in the version file and clean up the caches if the
version number is not correct.

You can delete the version files simply by deleting them from the Cl assCache
or Sessi onDat a directories as you would normally delete a file or you can use
the Servlets>Delete Version Files page in the Server Manager to delete them.
After deleting one or both version files, be sure to restart the Enterprise Server
to force it to clean up the appropriate caches and to recreate the version files
before the server serves any servlets or JSPs.

18 Programmer’s Guide to Servlets in Enterprise Server 4.0

Configuring JVM

Configuring JVM

If necessary, you can configure parameters for JVM either by using the
Servlets>Configure JVM Attributes page in the Server Manager interface, or by
editing JVM conf (or JVML1. conf or JVML2. conf, depending on which
version of JVM is being used).

The default settings in Enterprise Server for JVM are suitable for running
servlets. However, there may be times when you want change the settings. For
example, if a servlet or bean file uses a JAR file, add the JAR location to the
Classpath variable. To enable the use of a remote profiler, set the OPTITDIR
and Profiler variables.

The JVM parameters you can set are:

Option -- You can set any options allowed by the vendor’s JVM.

Profiler -- If you are using the Optimizeit! 3.0 profiler from Intuitive Systems,
enter the value opti ni zei t . For more information about this optimizer, see
the section Appendix F, “Remote Servlet Profiling.”

OPTITDIR -- If you are using the Optimizeit! 3.0 profiler from Intuitive
Systems, enter the pathname for the directory where Optimizeit! resides, for
example, D:/ App/ I ntui ti veSyst ens/ Opti mi zel t 30D. For more information
about this optimizer, see the section "Appendix F, “Remote Servlet
Profiling.”."

Minimum Heap Size -- determines the minimum heap size allocated for
Java.

Maximum Heap Size -- determines the maximum heap size allocated to
Java.

Compiler -- You can specify options to turn on and off JIT (just-in-time
compiler). See your JVM documentation for details.

Classpath -- Enter additional classpath values as needed. For example, if a
JSP uses a bean that is packaged in a JAR, add the JAR path to the classpath.

The classpath must not include backslashes in directory names. If you use
backslashes in the directory path in the interface, the system automatically
converts the backslashes to forward slashes. However, if you edit the
jmv.conf (orjvnll. conf orjvml2. conf) file, do not use backslashes in
directory names.

Using Servlets and JavaServerPages 19

Configuring JVM

= Enable Class GC -- Specifies whether or not to enable class garbage
collection. The default is yes.

= \erbose Mode -- Determines whether the JVM logs a commentary on what
it is doing, such as loading classes. The commentary appears in the error
log.

= Enable Debug -- You can enable or disable remote debugging. The default
is disabled. For more information about remote debugging, see the section
Appendix E, “Remote Servlet Debugging.”

20 Programmer’s Guide to Servlets in Enterprise Server 4.0

Chapter

Servlet and JSP Examples

This chapter discusses some Servlet and JSP examples. It has the following
sections:

= Examples Shipped with Enterprise Server 4.0
= Servlet Examples
« JSP Examples

Examples Shipped with Enterprise Server 4.0

Enterprise Server4.0 comes with a set of example servlets and JSP files. You
can find them at the following location:

server_root/plugi ns/ sanpl es/ servl ets
This directory contains the following directories:
= beans -- Contains example Java Bean files.

= bookst or e -- Contains files for an online bookstore example. This example
contains both servlets and JSPs.

= edeno -- Contains files for a general online store front. This example
contains both servlets and JSPs.

Chapter 2, Servlet and JSP Examples 21

Servlet Examples

= jsp -- Contains subdirectories that each contain example JavaServer Page
examples.

= make -- Contains example make files for servlets. These are common
makefiles containing rules that are included by all other makefiles.

= servlets -- Contains subdirectories that each contain example Java and
makefiles for servlet examples.

= sessions -- Contains code for Si npl eSessi onManager . j ava, which is the
default servlet session manager when the Enterprise Server runs in single
process mode. This directory also contains the code for
Si mpl eSessi on. j ava, which defines session objects, which are the
sessions managed by Si npl eSessi onManager. The source code for
Si mpl eSessi onManager and Si npl eSessi on are provided for you to use
as the starting point for defining your own session managers if desired. For
more information about sessions and session managers, see Appendix A,
“Session Managers.”

Servilet Examples

This section discusses two servlet examples as follows:

= A Simple Servlet Example -- generates a very simple page to be displayed in
a web browser.

= Example of a Servlet that Parses Input Parameters -- this servlet is used as a
form action.

You can find additional examples in the directory server_root/ pl ugi ns/
sanpl es/ servl et s/ servlets.

These examples are simple, introductory examples. For information about using
the Java Servlet API, see the documentation provided by Sun Microsystems at:

http://ww. javasoft.conf products/servlet/index. htm

A Simple Servlet Example

The following example code defines a very simple servlet. This example is the
Si mpl eSer vl et example in the server_root/ pl ugi ns/ sanpl es/ servl et s/
Si nmpl el directory.

22 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples

This servlet generates an HTML page that says "This is output fromthe

servlet." as shown in Figure 2.1

Simple Servlet Output

This s watpot from SemgleSerale

Figure 2.1 Output from SimpleServlet.class

This example defines the main servlet class as a subclass of Htt pSer vl et and

implements the doGet method. The code is shown below:

i mport java.io.*;
i mport javax.servlet.*;
i mport javax.servlet.http.*;

| **

* This is a sinple exanple of an HTTP Servlet that outputs

a very sinple web page.
*
/
public class SinpleServlet extends HttpServlet

{

| **

* Handl e the CET nethod by building a sinple web page.

*/

public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException

PrintWiter out;
String title = "Sinple Servlet Qutput”;

/1 Set content type and other response header fields first

response. set Cont ent Type("text/htm");

/1 Then wite the data of the response
out = response.getWiter ();

out. println("<HTM.><HEAD><TI TLE>") ;
out.println(title);

out. println("</TITLE></ HEAD><BODY>") ;
out.println("<HL>" + title + "</HL>");
out.println("<P>This is output from Sinpl eServlet.
out.println(getServletlinfo());

")

Servlet and JSP Examples 23

Servlet Examples

out. println("</BODY></ HTM.>") ;
out.close();

}

Example of a Servlet that Parses Input
Parameters

This example demonstrates how to use a servlet as a form action. This example
involves the following components:

= servform ht m- a web page containing a form as shown in Figure 2.2.
= servletl --aservlet that responds to the form.

servform.htm

This web page contains a form with the following elements:
e atext field named conpanynamne
= three checkboxes named host i ng, desi gn and j avadev

= aradio button named nunber of peopl e. The four possible values are
onepl us, t enpl us, hundr edpl us and t housandpl us

« a submit button

Figure 2.2 shows an example of the form in a web page:

24 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples

1 his form mvokes a serviet as
its action.
Fonse srior vear cempany™s name;

What wrh servires does your company peed 7

F Wb Server Hosting
F Wah Fage Dergn
F Jawa Seriiers sad J5F Dievelopioest

Flow many people wre in yvoor company

It

0 - 59
100 - 55
FLIIE

p Mow M Ko |

Swbmil Form

Figure 2.2 This form invokes a servlet as its action

The form’s method is GET and the action is servl et 1. cl ass.

<FORM METHOD=CET ACTI ON="servl et/servletl.class">

Click the following link to see the form: (View the source to see the source
code).

servformhtm

servietl

This servlet parses the input parameters received from the form. It displays the
query string that invoked it, and then parses and displays the input parameters
received from the form. Finally it constructs a message that is customized

according to the input parameters received. An example is shown in Figure 2.3.

Servlet and JSP Examples 25

Servlet Examples

Example Form Response

4Ar guETy '“Tld u

goEpanyEaRe by ghicer+lonkescban i repeon e | sradevecagn gy o f peeog L ==
The walies of $ie parameters seok by the form are

suEler Of Beapie ol
Ry mass, gl Baoks
koifiag: ag

deriper mrll

JTeaaEne am

W womnbl love to lddp your largs company 0@ solve it needs Tor

& Wl lwririms
« Juva serviel and J5P dey I|.'|'"Lll:|l|'l.|l

Figure 2.3 An example response from the servlet

This class implements the doGet () method, since it will be invoked by a form
that uses the GET method. If the form used the POST method, the class would
need to implement the doPost () method.

The source code is shown below.You can also access it through this link:
servl etl.java.

inmport java.io.*;
inmport javax.servlet.*;
inmport javax.servlet.http.*;

/**

* This is a sinple exanple of an HTTP Servlet that responds to input
* parameters such as forminput.
*/

public class servletl extends HttpServl et

{

/**

* The doGet nethod parses the input paraneters and constructs
* an output page based on the information received fromthe form

*/

public void doGet (
Ht t pSer vl et Request request,
Ht t pSer vl et Response response

26 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples

) throws Servl et Exception, |OException

{
PrintWiter out;
String title = "Exanpl e Form Response";

/1 Set content type and other response header fields first.
response. set Cont ent Type(“"text/htm");

/] Get an output stream
out = new java.io.PrintWiter(response. getQutputStream());

/1 Print the HTM., HEAD, and TITLE tags.

out. println("<HTM.><HEAD><TI TLE>");

out.println(title);

out. println("</TITLE></ HEAD><BODY>") ;

out.println("<HL>" + title + "</HL>");

out. println("<P>Thi s page was generated by " +
"a servlet.</P>");

// Print the query string just for informational purposes.
String queryString = request.getQueryString();
out.println("<P>The query string is <CODE>" + queryString +
"</ CODE>") ;

/1 Extract the values of the paraneters sent by the form
// 1f a paraneter does not exist, getParaneter() returns null.

String nunberof peopl e = request. get Par anet er (" nunber of peopl e") ;
String conpanynane = request.get Paraneter ("conpanynanme");
String conpanysize = "";

String design = request.getParaneter("design");

String javadev = request.getParaneter("javadev");

/1 Print out the input paraneters

out.println("<P>The val ues of the paraneters sent by the formare:");
out. printl n("<BLOCKQUOTE><I >nunber of people: " + hosting);

out.println("
conpany nane: " + hosting);
out.println("
hosting: " + hosting);
out.println("
design: " + design);

out.println("
javadev: " + javadev + "</|></BLOCKQUOTE>");

/] Construct a custom zed nmessage encouragi ng
/1 the viewer to use our conpany for its web needs.

/'l First test if any skills are needed.

// 1f not, construct a generic nmessage.

/1 If skills are needed, create an unordered list with
/1 a bullet itemfor each skill selected.

String skillsneeded = ;
if ((hosting == null) && (design == null) && (javadev == null))
{skillsneeded = " all your web server requirenents.";

}

Servlet and JSP Examples 27

Servlet Examples

el se
{ skillsneeded = "";
if ((hosting !'= null) && (hosting.equals("on")))
skill sneeded += "Web hosting";
if ((design != null) && (design.equals("on")))
skill sneeded += "Wb page design";
if ((javadev !'= null) && (javadev.equal s("on")))
skill sneeded += "Java servl et and JSP devel opnent
skill sneeded = skillsneeded + "";

}

/1 Figure out what size conpany sent the form

// Choices are small, small to nediumsize, nediumsize and | arge.

i f (nunberof people == null)
nunber of peopl e = "size unknown";

el se if (nunberof peopl e == "onepl us")
conpanysi ze = "small "

el se if (nunberof people == "tenplus")
conpanysi ze = "small to nediumsize “;

el se if (nunberof peopl e == "hundredpl us")
conpanysi ze = "medi um si ze "

el se conpanysi ze = "large";

// Print a message tailored to the conpany that sent the form

out. println("<H3>" +
"We would |ove to help your " + conpanysize + " conpany" +
' to solve its needs for " + skillsneeded + "</ FONT></H3>");

/1 Print the closing tags in the HTM. page
// and close the output stream

out. println("</BODY></ HTM.>") ;

out.close();

/1 end the nethod

}

/1 end the class

}

Running the Example

To run this example, save ser vf or m ht mto the directory of your choice in or
under the server’'s document root. Create a subdirectory called servl et in the
directory where you save ser vf orm ht m Save ser vform cl ass to the new
servl et directory. Register the new ser vl et directory as a servlets directory,
as discussed in the section "Registering Servlet Directories."

28 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples

To view the form, open ser vf or m ht musing an http URL. For example, if you
put ser vf or m ht min the document root directory, open it with the URL
http://your_serverl/servformhtm

JSP Examples

This section presents the following JSP examples:

= JSP that Accesses the Request Object. This example is self-contained -- it
uses no external beans or Java classes.

= JSP that Responds to a Form and Uses Java Beans.

You can find additional examples in the directory server_root/ pl ugi ns/
sanpl es/ servl ets/j sp.

These examples are simple, introductory examples. For information about
creating JavaServer Pages, see Sun Microsystem’s JavaServer Pages web page at:

http://ww.javasoft.conl products/jsp/index. htm

JSP that Accesses the Request Object

JavaServer Pages contain both standard HTML tags and JSP tags. One of the JSP
tags is <DI SPLAY> which displays information contained in bean objects. The
<DI SPLAY> tag has the following format:

<DI SPLAY property=obj ect: property>

where property can include nested properties, for example:
property: obj ect1: property2: property3

Examples of the <Dl SPLAY> tag are:

<DI SPLAY property=request: nmet hod>
<DI SPLAY property=product:version: nodi fi cati onDat e>

All JSP pages can implicitly access the r equest object, which contains
information about the request that invoked the page, such as the requested
URI, the query string, the content type and so on. The r equest object has
properties such as request URI, queryString, and content Type.

Servlet and JSP Examples 29

JSP Examples

This example displays information about the current request. It gets all its data
from the r equest object, which is automatically passed to the JSP. This
example is the snoop. j sp example in the server_root/ pl ugi ns/ sanpl es/
servl et s/ j sp/ snoop directory.

Figure 2.4 shows an example of the output page generated by this JSP.

Request Information

18F Fegeei Bl=ileed JET
Fepesit R feptedlalmig. fip
Feqeedt Fromool: HTTF
Serviel path: fpiestsimoop g

#aih mfa

Paih ragelaied

CRIATE THEg

Comlent |ergrik 0

oirnt byge

SRCTET TR R m {oman com
werwer et 36

A R

Feimoie addeess 208 1153 .53
Femsie hagl 20E 12.53 53
Auforesson schemr

The mpst parsmesier vehie 15 HolaleGren

Figure 2.4 Output page generated by snoop.jsp

The source code for snoop. j sp is:
<HTM.>

<BODY>
<H1> Request I|nformation </Hl>

JSP Request Method: <DI SPLAY property=request: met hod>

Request URI: <DI SPLAY property=request:request URl >

Request Protocol: <DI SPLAY property=request: protocol >

Servl et path: <DI SPLAY property=request: servl et Pat h>

Pat h i nfo: <DI SPLAY property=request: pat hl nf 0>

Pat h transl ated: <DI SPLAY property=request: pat hTr ansl at ed>

Query string: <DI SPLAY property=request: queryString>

Content | ength: <DI SPLAY property=request: contentLengt h>

Content type: <Dl SPLAY property=request: content Type>

Server name: <DI SPLAY property=request: server Nane>

Server port: <DI SPLAY property=request: serverPort>

Renot e user: <DI SPLAY property=request:renoteUser >

Renot e address: <DI SPLAY property=request:renpt eAddr >

30 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples

Renot e host: <Dl SPLAY property=request:renpt eHost >

Aut hori zati on schene: <Dl SPLAY property=request:aut hType>

The input paraneter value is <Dl SPLAY property=request: parans:inputl
pl acehol der =" NoVal ueG ven" >

</ BODY></ HTML>

JSP that Responds to a Form and Uses
Java Beans

This example discusses a JSP that accesses data on Java beans to respond to a
form.

This example presents a web page, shoef or m ht m that displays a form asking
the user to select the kinds of shoes they want to know more about. The action
of the form is shoes. j sp. This JSP file gets information about the relevant
kinds of shoes from a set of Java beans.(Note that Java beans were originally
designed for use with visual tool builders, and they have some overhead that
can make them slow when used to retrieve data to display in web pages.)

The discussion of this example has the following sections:
e The Form

= The Output Page Generated by the JSP File

= Accessing Input Parameters

= Testing for Parameter Values

= Using Externally Defined Java Beans

< Source Code for shoes.jsp

= The Java Beans Used in this Example

< Running the Example

The Form

The form in the page has the following elements:

« atext field called user Nane.

= three checkboxes named Sandal s, Hi ki ngBoot s and Wal ki ngShoes
= a submit button

The form’s method is POST and the action is shoes. j sp. (It also works if the
form’s method is GET.)

Servlet and JSP Examples 31

JSP Examples

<FORM METHOD=POST ACTI ON="shoes. jsp">

Figure 2.5 shows an example of the form.

| his form invokes a J5F
page as its action.
Iﬂ-l'\-l.‘i-l‘lllrlf:l'!:ll.l.rlrlllll":
[

What kind of shoes weoald you Bce mformatian abows?
tcheck all thai applyi:

F Samdak

F Hikag Boots
M Walkog Shees
Eiibivi |

Figure 2.5 This form invokes a JSP as its action

You can view this form live at shoef orm ht m

The Output Page Generated by the JSP File

The JSP file shoes. j sp responds to the form. It uses the r equest : par ans
property to access the parameters received from the form.

The output page generated by shoes. j sp prints a welcome message that
includes the user’s name, as entered in the user Narre text field in the form. It
then displays information about each kind of shoe that was selected. The JSP
file gets information about the shoes from Java Beans.

This JSP file demonstrates the following features:
= Accessing Input Parameters

= Testing for Parameter Values

= Using Externally Defined Java Beans

Figure 2.6 shows an example of the output from shoes. j sp:

32 Programmer’s Guide to Servlets in Enterprise Server 4.0

This response was generated by a JSP file
that uses heans
Helle Mikki Feckwnlll Welccms $o o J5F form tenl mepila

Here is mfonmaticn about e kind. of shees von o mieresied
Sandals

= The svadabsls oelors for Siese shosd melude oy, e, a0 dark beoem
® Thede dbzen Eahre casy-chy bockled, ather micke:, comloriabls kesk, and & dreiy
Hopranmce

Hikcing Fuais

= The wvadnbls colocs for fese shoss mohds black, browm, sd wenscanvas
» These shees Branre mbkde aggon, anch moppoet, and ow patemed spenip-sase nscles

Walking Shoes
* The mesdable colors for Siram shoss mehude back, gray, and fem

& Thege theas fephre o patenéed sprng-rase mssies, bong-lvdmg o s uppers, and
merre combort than pou've ever sxpepenced mowalkmng shees bafore

Figure 2.6 A JSP page generated in response to a form submission
You can view the JSP file at:

shoes. j sp

Accessing Input Parameters

For example, if the following URL is used to invoke a JSP:

http://poppy. ny_donai n. com product s/
shoes. j sp?user Nane=Jocel yn&Sandal s=on&Wal ki ngShoes=on

JSP Examples

JSP pages can extract input parameters when invoked by a URL with a query
string, such as when they are invoked as a form action for a form that uses the
GET method. The implicit r equest object has a property par ans whose value
is an object that has attributes for each parameter in the query string.

The request : par ans object has properties user Nane, Sandal s, and
Wal ki ngShoes.

Servlet and JSP Examples 33

JSP Examples

Testing for Parameter Values

This example uses the <I NCLUDEI F> JSP tag, which includes a block of JSP
and/or HTML code if a given parameter has a specified property.
For example:

<| NCLUDEI F PROPERTY="r equest : par ans: Sandal s" VALUE="on">
<H4>Sandal s</ H4>
</ | NCLUDEI F>

This code says if, and only if, the input parameters include a parameter named
Sandal s whose value is "on", then print <H4>Sandal s</ H4> to the output

page.
For more information about the <I NCLUDEI F> tag, and the corresponding
<EXCLUDEI F> tag, see the JSP APl documentation from Sun Microsystems at:

http://ww. j avasoft. con products/jsp/index. htm

Using Externally Defined Java Beans

Some bean objects including the r equest object, are always available implicitly
to a JSP page. Other objects, such as user-defined objects, are not automatically
available to the page, in which case you have to include a <USEBEAN> tag to tell
the page which object to use. S

The JSP tag <USEBEAN> creates an instance of an externally defined Java Bean
for use within the JSP page. For example, the following code creates an
instance of the Sandal s bean which is in com shoes/ beans.

<USEBEAN nane="sandal A" type=com j ocel yn. beans. sandal s | i f espan=page>
</ USEBEAN>

In this case, the Sandal s bean instance exists for the duration of the page.

The following code retrieves the value of the col or s property of the Sandal s
bean.

The avail abl e colors for these shoes include
<DI SPLAY property=sandal A: col or s>

Source Code for shoes.jsp

Here is the source code for the JSP file shoes. j sp:
<HTM.>

34 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples

<HEAD><TI TLE>When the shoe fits, wear it</TITLE></ HEAD>

<H1>
This response was generated by a JSP file that uses beans
</ FONT></ H1>

<l-- Get the person who sent the formfromthe userNane paraneter -->
<P>Hel | o <DI SPLAY PROPERTY="r equest: par ans: user Name" >! </ B>

Wel cone to our JSP formtest results.
</ B></ P>

<!-- Display a bullet itemfor each kind of shoe selected -->
<P>Here is infornmation about the kind of shoes you are interested in:

<I NCLUDEI F PROPERTY="r equest : par ans: Sandal s" VALUE="on">
<USEBEAN nane="sandal S" type=com shoes. beans. sandal s |ifespan=page>
</ USEBEAN>
<H4>Sandal s</ H4>

The avail able colors for these shoes include
<DI SPLAY property=sandal S: col or s>.
These shoes feature <Dl SPLAY property=sandal S: feat ures>.
</ UL>
</ | NCLUDEI F>

<I NCLUDEI F PROPERTY="r equest : par ans: Hi ki ngBoot s" VALUE="on">
<USEBEAN nane="hi ki ngH"' type=com shoes. beans. hi ki ngBoot s
I'i f espan=page>
</ USEBEAN>
<HA>Hi ki ng Boot s</ H4>

<Ll >The avail able colors for these shoes include
<DI SPLAY property=hi ki ngH: col or s>.
These shoes feature <Dl SPLAY property=hi ki ngH: f eat ures>.
</ uL>
</ | NCLUDEI F>

<I NCLUDEI F PROPERTY="r equest : par ans: Wl ki ngShoes" VALUE="on">
<USEBEAN nane="wal ki ngW type=com shoes. beans. wal ki ngShoes
I'i f espan=page>
</ USEBEAN>
<HA>Wal ki ng Shoes</ H4>

The avail able colors for these shoes include
<DI SPLAY property=wal ki ngW col or s>.
These shoes feature <Dl SPLAY property=wal ki ngW f eat ures>.
</ uL>
</ | NCLUDEI F>

</ BODY>
</ HTML>

Servlet and JSP Examples 35

JSP Examples

Note

The Java Beans Used in this Example

The shoes. j sp file accesses three Java Bean objects, sandal s, hi ki ngBoot s,
and wal ki ngShoes.

These classes all inherit from a superclass Shoes, which defines setter and
getter methods for the variables pr odNane, col or s, and f eat ur es. The
subclasses Sandal s, Hi ki ngBoot s, and Wal ki ngShoes simply define their
own values for these variables.

The source code for these classes is available through the following links:
» shoes.java

* sandals.java

* hikingBoots.java

« walkingShoes.java

A jar file containing all the class files is available at:

* shoes.jar

For more information about defining Java Beans, see:

http://ww. j avasoft. conf beans/i ndex. ht m

Running the Example

To run this example, get the jar file shoes.jar (or create it by compiling
shoes.java , sandals.java , hikingShoes.java , and walkingShoes.java

and then packaging the compiled class files into a JAR file). Put shoes.jar ina
subdirectory of your choosing in your Enterprise Server root directory. If you
already have a directory where you put JAR files, you can put it in there.

Add the full pathname of the shoes.jar location to the JVM class path, which
you can do in the Servlets>Configure JVM Attributes page of the Server
Manager interface.

Put shoeform.htm and shoes.jsp together in a subdirectory in or below the
Enterprise Server’'s document root directory. (JSP files do not go in a registered
servlet directory.)

Note that the link above to shoes. j sp opens a file of the name
shoes. j sp. t xt -- save this file from the browser without the . t xt extension
to save it as a JSP file rather than a plain text file.

36 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples

To view the form, open shoesf or m ht musing an http URL. For example, if
you put shoesf or m ht min the document root directory, open it with the URL
http:// your_serverl/ shoesform htm

Servlet and JSP Examples 37

JSP Examples

38 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

Session Managers

Session objects maintain state and user identity across multiple page requests
over the normally stateless HTTP protocol. A session persists for a specified
time period, across more than one connection or page request from the user. A
session usually corresponds to one user, who may visit a site many times. The
server can maintain a session either by using cookies or by rewriting URLs.
Servlets can access the session objects to retrieve state information about the
session.

This appendix has the following sections:
= Session Overview

= Specifying a Session Manager

= SimpleSessionManager

= MMapSessionManager

< How Do Servlets Access Session Data?

Session Overview

An HTTP session represents the server's view of the session. The server
considers a session new under these conditions:

= The client does not yet know about the session

= The session has not yet begun

Appendix A, Session Managers 39

Specifying a Session Manager

A session manager automatically creates new session objects whenever a new
session starts. In some circumstances, clients will not join the session, for
example, if the session manager uses cookies and the client does not accept
cookies.

Enterprise Server 4.0 comes with two session managers for creating and
managing sessions:

= Sinpl eSessi onManager -- the default session manager when the server
runs in single process mode.

= MwvhapSessi onManager -- the default session manager when the server runs
in multi-process mode.

Enterprise Server 4.0 also allows you to develop your own session managers
and load them into the server. The build includes the source code for

Si npl eSessi onManager and the session objects it manages, Si npl eSessi on.
The source code for these classes are provided as a starting point for you to
define your own session managers if desired. These Java files are in the
directory server-root/ pl ugi ns/ sanpl es/ servl et s/ sessi ons/

Si npl eSessi on.

Specifying a Session Manager

By default, if the Enterprise Server starts in single process mode, it uses

Si npl eSessi onManager as the session manager for servlets. If it starts in multi-
process mode, it uses MvapSessi onManager . For more information about
single process mode versus multi processes mode, see Chapter 7, “Configuring
Server Preferences” in the Enterprise Server 4.0 Administrator’s Guide.

You can change the session manager in either of the following ways:

= Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.
In the Session Manager field, specify the session manager. (You cannot
specify initial parameter values in the interface).

< Edit the file servl et. properti es in the directory server-idl confi g.

Add a line specifying a value for servl et s. sessi onngr and, if
appropriate, also add a line specifying the parameters for the session
manager. For example:

40 Programmer’s Guide to Servlets in Enterprise Server 4.0

SimpleSessionManager

servl et s. sessi onngr =com net scape. server. http. sessi on. Your Sessi onManager
servl ets. sessionngr.initArgs=maxSessi ons=20, ti neQut =300, r eapl nt er val =150

SimpleSessionManager

The Si npl eSessi onManager works only in single process mode. It is loaded
by default if the Enterprise Server starts in single-process mode when a
SessionManager is not specified in the servl et s. properti es configuration
file. These sessions are not persistent, that is, all sessions are lost when the
server is stopped.

Parameters

The Si npl eSessi onManager class takes the following parameters:

= maxSessi ons - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessi ons number of sessions present
at that time.

= tinmeQut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven't
been accessed for at least t i meQut seconds will be destroyed by the
r eaper () method.

= reaplnterval -the amount of time in seconds that the SessionReaper
thread sleeps before calling the r eaper () method again.

Enabling SimpleSessionManager

To enable the Enterprise Server to use Si npl eSessi onManager do either of
the following:

= Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com net scape. server. http. sessi on. Si npl eSessi onManager

Appendix A, Session Managers 41

MMapSessionManager

= Edit the file servl et. properti es in the directory server-idl confi g.

Add a line specifying a value for servl et s. sessi onngr and a line
specifying the parameters for the session manager:

servl et s. sessi onngr =com net scape. server. http. sessi on. Si npl eSessi onManager
servl ets. sessionngr.initArgs=naxSessi ons=20, ti neQut =300, r eapl nt er val =150

Source Code for SimpleSessionManager

The Si npl eSessi onManager creates a Si npl eSessi on object for each session.
The source files for Si npl eSessi onManager . j ava and Si npl eSessi on. j ava
are in the directory server-root/ pl ugi ns/ sanpl es/ servl et s/ sessi ons/
Si npl eSessi on.

The source code for Si npl eSessi onManager . j ava and Si npl eSessi on. j ava
are provided so you can use them as the starting point for defining your own
session managers and session objects. These files are very well commented.

Si npl eSessi onManager extends NSHt t pSessi onManager . The class file for
NSHt t pSessi onManager is in the JAR file NSSer vl et Layer . j ar in the
directory server_root/ pl ugi ns/j ar. Si npl eSessi onManager implements
all the methods in NSHt t pSessi onManager that need to be implemented, so
you can use Si npl eSessi onManager as an example of how to extend

NSHt t pSessi onManager . When compiling your subclass of

Si npl eSessi onManager or NSHt t pSessi onManager , be sure that the JAR file
NSSer vl et Layer . j ar is in your compiler’s class path.

MMapSessionManager

This is a persistent memory map file-based session manager that works in both
single process as well as multi-process mode. It can be used for inter-process
communication. It is loaded by default if the Enterprise Server starts in multi-
process mode when a session manager is not specified in the

servl ets. properties configuration file.

42 Programmer’s Guide to Servlets in Enterprise Server 4.0

MMapSessionManager

Parameters

MvapSessi onManager takes the following parameters:

maxSessi ons - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessi ons number of sessions present
at that time.

maxVal uesPer Sessi on - maximum number of values a session can hold.

maxVal uesSi ze - maximum size of the object that can be stored in the
session.

ti meQut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven't
been accessed for at least t i meQut seconds will be destroyed by the

r eaper () method.

reapl nt erval -the amount of time in seconds that the SessionReaper
thread sleeps before calling the r eaper () method again.

Enabling MMapSessionManager

To enable Enterprise Server to use MvapSessi onManager do either of the
following:

Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com net scape. server. http. sessi on. MMapSessi onManager

Edit the file servl et. properti es in the directory server-id/ config.

Add a line specifying a value for servl et s. sessi onngr and a line
specifying the parameters for the session manager:

servl ets. sessi onngr =com net scape. server. htt p. sessi on. MMapSessi onManager
Sessi onManager

servl ets. sessi onngr.initArgs=nmaxSessi ons=20, maxVal ueSi ze=1024, t i meQut =3
00, reapl nterval =150

This session manager can only store objects that implement
java.io. Serializable.

Appendix A, Session Managers 43

How Do Servlets Access Session Data?

How Do Servilets Access Session Data?

To access the state information stored in a session object, your servlet can
create a new session as follows:

/'l request is an HttpServl et Request that is passed to the servlet
Sessiond ass sessi on = request. get Session(true);

The servlet can call any of the public methods in
j avax. servl et. http. Ht t pSessi on on the session object. These methods
include (amongst others):

get Creati onTi ne

getld

get Last AccessedTi ne
get Maxl nacti vel nt erval
get Val ue

For more information about the classes Ht t pSer vl et Request and
Ht t pSessi on, see Sun Microsystem’s API Servlets Documentation at:

http://ww.javasoft.conf products/servlet/2.1/htm/api-reference.fmhtm

44 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

Servlet Settings in obj.conf

Netscape Enterprise Server 4.0 automatically modifies the file obj . conf in the
confi g directory to load the servlet engine if servlets are enabled. Whenever

you make changes to servlet settings by using the Server Manager interface, the
system automatically updates obj . conf appropriately.

However, in case you are interested in the settings that affect servlets, this
appendix describes the directives in obj . conf and value settings nmi ne. t ypes
that are relevant to servlets.

Directives for Enabling Servlets

The following directives in the i ni t section of obj . conf load and initialize the
servlet engine to enable servlets:

Init fn="1oad-nodul es" shlib="server_root/bin/https/bin/
NSSer vl et Pl ugi n. dl | / so"

funcs="NSServl et Earl yl ni t, NSSer vl et Lat el ni t, NSSer vl et NaneTr ans,
NSSer vl et Servi ce" shlib_flags="(gl obal | now)"

Init fn="NSServletEarlylnit" Earlylnit=yes
Init fn="NSServletLatelnit" Latelnit=yes
NSSer vl et Ear | yl ni t takes an optional parameter cache_di r that specifies

the location of a temporary cache directory for JSP classes. By default the
directory is named " d assCache" and goes under your server root directory.

Appendix B, Servlet Settings in obj.conf 45

Directives for Registered Servlet Directories

NSSer vl et Lat el ni t takes an optional parameter Cat chSi gnal s that specifies
whether or not Java thread dumps are logged. The value is yes or no.

When servlets are enabled, the following directive appears in the default object:

NameTr ans fn="NSSer vl et NameTr ans" nanme="servl et"

This directive is used for servlet virtual path translations and for the URI cache.
Do not delete this line when servlets are enabled.

Also, obj . conf always has the following objects, which you should not delete:

<bj ect nanme="servlet">
Service fn="NSServl et Service"
</ Cbj ect >

<bj ect nane="jsp">
Servi ce fn="NSServl et Servi ce"
</ Cbj ect >

If you delete these objects, you will no longer be able to use the Server
Manager interface to enable servlets and modify servlet settings.

Directives for Registered Servlet Directories

For each registered servlet directory, the default object in obj . conf has a
NaneTr ans directive that assigns the name Ser vl et ByExt to all requests to
access that directory. For example:

NameTrans fn="pfx2dir" fronm="/servlet" dir="D:/Netscape/ Server4/docs/
servl et" nane="Servl et ByExt"

A separate object named Ser vl et ByExt has instructions for processing
requests for servlets:

<hj ect nane="Servl et ByExt ">

bj ect Type fn="force-type" type="magnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServl et Service"
</ Cbj ect >

Do not delete this object, even if no servlet directories are currently registered.
If this object is deleted, you will no longer be able t use the Server Manager
interface to register servlet directories.

46 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP

JSP

The following line in mi me. t ypes sets the type for files with the extension
.j sp:
type=nagnus-internal /jsp exts=jsp

When JSP is enabled, the following directive in obj . conf handles the

processing of requests for files of type magnus-i nt ernal /j sp (that is, JSP
files)

Service fn="NSServl et Service" type="magnus-internal/jsp"

Appendix B, Servlet Settings in obj.conf 47

JSP

48 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

servlets.properties and
rules.properties

This appendix discusses the purpose and use of the files
servl et. properties and rul es. properti es, which reside in the directory
server_idl config.

servlet.properties

The servl et. properti es file defines global servlet settings and the list of
servlets in the system.

The servl et. properti es file specifies global settings for servlets, such as a
servlet to run when the Enterprise server starts up, the reload interval for
servlets, and so on. It also specifies configuration information for individual
servlets. Configuration information includes the class name, the class path and
any input arguments required by the servlet.

If you want to specify a virtual path translation for a servlet, the servlet must be
configured in the servl et . properti es file.

You can specify configuration information for servlets either by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface or by
editing servl et s. properti es directly. Whenever you make a change in the
Servlets>Configure Servlet Attributes page in the Server Manager interface, the
system automatically updates servl ets. properti es.

Appendix C, servlets.properties and rules.properties 49

rules.properties

When specifying attributes for a servlet, you specify a name parameter for the
servlet. This name is not the name of the class file for the servlet but is instead
an internal identifier for the servlet. You specify the name of the class file as the
value of the code parameter.

Here is a sample servl et . properti es file:

servl et. properties

Servlets Properties

servlets to be | oaded at startup

servlets.startup= hello

the reload interval for dynam cally-1oaded servlets and JSPs
(default is 10 seconds)

servl ets.config.rel oadl nterval =5

the default document root,

needed so ServletContext.getReal Path will work

servl ets. confi g. docRoot =E: / Net scape/ Ser ver 4/ docs

the sessi on manager

servl et s. sessi onngr =com net scape. server. http. sessi on. Si npl eSessi onManager
tracker servlet

servl et.tracker.code=MyTr acker Ser vl et

servl et.tracker. cl asspat h=D:/ Net scape/ Server 4/ docs/ servl et

dermpl servl et

servl et. denpl. code=DenplSer vl et

servl et.denpl. cl asspat h=D: / Net scape/ Ser ver 4/ docs/ denps

servl et. denpl.initArgs=al=0, b1=3456

rules.properties

The rul es. properti es files defines servlet virtual path translations. For
example, you could set up a mapping so that the URL pointing to / i ndex. ht m
URL invokes the servlet / servl et/ runi ntro. cl ass. You can specify virtual
paths for your servlets either by setting parameters in the Servlets>Configure
Servlet Virtual Path Translation page of the Server Manager interface or by
specifying the paths in the rul es. properti es file.

Note that the “name” associated with the servlet in servl ets. properties is
used in the file rul es. properti es -- the class name of the servlet does not
show up in rul es. properties. For example, the following lines in

servl et . properties associate the servlet name denol with the servlet class
file Deno1Ser vl et . cl ass in the directory D: / Net scape/ Ser ver 4/ docs/
denvs.

in servlets.properties
denpl servl et

50 Programmer’s Guide to Servlets in Enterprise Server 4.0

rules.properties

servl et. denpl. code=DenplSer vl et
servl et.denpl. cl asspat h=D: / Net scape/ Ser ver 4/ docs/ denps

The following line in rul es. properti es defines a servlet virtual path
translation such that the URL ht t p: / / server - nanel nyt est 2 invokes the servlet
at D: / Net scape/ Ser ver 4/ docs/ denos/ Denpl1Ser vl et . cl ass.

/ nyt est 2=denol
Here is an example of rul es. properti es.

rul es. properties (defines URL name space for each of the servlets):

Servlet rules properties

This file specifies the translation rules for invoking servlets
The syntax is:

/virtual - pat h=servl et - nane

where virtual -path is the virtual path used to invoke the servlet,
and servlet-name is the name of the servlet as specified in
servl ets. properties.

Surroundi ng white space is ignored

The ordering of the rules is not inportant, as the |ongest
match is always used first.

/ nyt est 1=t racker

/ nyt est 2=denol

HHHHHHHHHHR

Appendix C, servlets.properties and rules.properties 51

rules.properties

52 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

JVM Configuration

The Java Virtual Machine (JVM) works by default without any additional
configuration if properly set up.

However, if you need to specify settings for the JVM, such as additional
classpath information, you can configure the JVM properties for Enterprise
Server via the Administrator interface. You can add as many other properties as
you want to (up to 64).

You can also configure JVM parameters by editing the j vmL1. conf or
j vmL2. conf configuration files, (depending on which version of the JDK is
being used) which reside under the server’s confi g directory.

Here is an example j vm conf file:

j vm conf (example for JDK1.1):

[IVMConfi g]

#j vm nati veSt ackSi ze=131072
#j vm j avaSt ackSi ze=409600
#j vm mi nHeapSi ze=1048576
#j vm maxHeapSi ze=16777216
#j vm veri f yMode=0

#j vm enabl el assGC=1

#j vm enabl eVer boseGC=0

#j vm di sabl eAsyncGC=0

#j vm ver boseMbde=1

j vm enabl eDebug=1

j vm debugPor t =2525

Appendix D, JVM Configuration 53

jvm cl asspat h=/server_root/bin/https/jre/lib/classes.zip;
ANY_OTHER _JAVA_SPECI FI C_PROPERTY

For example, to disable JIT you can add the following line to j vm conf:

j ava. conpi | er =Dl SABLED

jvim2. conf (example for JDK1.2)

[IVMConfi g]

#j vm mi nHeapSi ze=1048576

#j vm maxHeapSi ze=16777216

j vm enabl eCl assGC=0

#j vm ver boseMbde=1

#j vm enabl eDebug=1

jvm option=- Xrunoi i

jvmoprofiler=optimzeit

j ava. conpi | er =NONE

OPTI TDI R=D: / App/ I ntui tiveSystens/ Optim zel t 30D

The configuration file for JDK1.2 is similar to the one for JDK1.1. Generally you
should use plain property options (like nanme=val ue) for the JDK1.2
configuration and j vm opt i on=opt i ons for JVM-vendor dependant
configurations. There could be multiple occurrences of j vm opti on
parameters.

In Enterprise Server 4.0, jvm.conf files support a configuration parameter called
j vm stickyAttach. Setting this parameter to 1 causes threads to remember
that they are attached to the JVM, thus speeding up request processing by
eliminating calls to At t achCur r ent Thr ead and Det achCur r ent Thr ead. It can,
however, have side effect as recycled threads that may be doing other
processing can be suspended from the garbage collection pool arbitrarily.

For information about JVM, see The Java Virtual Machine Specification from
Sun at

http://ww. javasoft.conf docs/ books/ virspec/ ht ml / VMSpecTOC. doc. ht i

54 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

Remote Servlet Debugging

Enterprise Server 4.0 ships with the Java Runtime Environment (JRE), not the
Java Development Kit (JDK). However, during installation you can select an
option that tells the server to use the JDK if it is installed elsewhere on your
system.

If the server has been instructed to use a JDK, you can do remote servlet
debugging. If the server is using the JRE, you need to switch it to using the JDK
before you can do remote debugging. For information on instructing the server
to use the JDK or the JRE, see the section “Configuring JRE/JIDK Paths” in
Chapter 1, “Using Servlets and JavaServerPages.”

Assuming that the server is using the JDK, you can enable remote debugging
by following these steps:

= Make sure that the server is running in single-process mode. Single-process
mode is the default, but you can check in the file magnus. conf to make
sure that the MaxPr ocs parameter is not set to a value greater than 1. If you
do not see a setting for MaxPr ocs in magnus. conf then the default value of
1 is enabled for it.

For more information about single process mode versus multi processes
mode, see Chapter 7, “Configuring Server Preferences” in the Enterprise
Server 4.0 Administrator’'s Guide.

= Set the following parameters in j viml1. conf orjvmi2. conf as
appropriate:

Appendix E, Remote Servlet Debugging 55

j vm enabl eDebug=1
j ava. conpi | er =Dl SABLED

= Change your obj . conf to use the debuggable version of the JVM (this
doesn't apply for JDK1.2):

Init fn="1oad-nodul es" shlib="server_root/bin/https/bin/

NSSer vl et Pl ugin_g. dl | *

funcs="NSServl et Earl yl ni t, NSSer vl et Lat el ni t, NSSer vl et NaneTr ans, NSSer vl e
t Service" shlib_flags="(gl obal | now)"

= Start the server manually and record the password for remote debugging
(this will be displayed on the console)

= Start the Java debugger: j db -host your _host -password
t he_password

You should be able to debug your Java classes now.

Appendix E, Remote Servlet Debugging 56

Appendix

Remote Servlet Profiling

You can use Optimizeit! 3.0 from Intuitive Systems to perform remote profiling
on the Enterprise Server to discover bottlenecks in server-side performance.
You can purchase Optimizeit! from Intuitve Systems at:

http://ww. optim zeit.conlindex. htnl

Once Optimizeit! is installed using the following instructions it becomes
integrated into Enterprise Server 4.0.

To enable remote profiling, make the following modifications in the
jvmil. conf orjvmi2. conf files as appropriate:

jvni 12] . conf example:

j vm enabl eCl assGC=0

jvmoption=-Xrunoii # this is only required for JDK1.2
jvmprofiler=optimnzeit

j ava. conpi | er =NONE

OPTI TDl R=<optim zeit_root_dir>/ Optim zelt 30D

When the server starts up with this configuration, you can attach the profiler
(for further details see the Optimizeit! documentation).

Also, update the PATH and NSES_CLASSPATH system variables to include the
profiler's own jar files and dlls.

Note: If any of the configuration options are missing or incorrect the profiler
may experience problems that affect the performance of the Enterprise Server.

Appendix F, Remote Servlet Profiling 57

58 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

API Clarifications

This appendix clarifies the way some of the standard Servlet APl work in
Enterprise Server 4.0. For the official documentation for the API discussed here
(and for all servlets API) see the Servlets API Class Reference published by Sun
Microsystems at:

http://ww.]javasoft.conf products/servlet/2.1/htm/api-reference.fmhtm

This appendix provides clarifications for using the following API with
Enterprise Server 4.0:

= HttpUtils.getRequestURL()

= HttpSession.setMaxInactivelnterval()

= GenericServlet.getInitParameter() and getinitParameterNames()
= ServletContext.getContext()

= RequestDispatcher.forward() and include()

= Request.getinputStream() and getReader()

HttpUtils.getRequestURL()

public static StringBuffer getRequest URL(HttpServl et Request request);

This method reconstructs the URL used by the client to make the given request
on the server. This method accounts for difference in scheme (such as http,
https) and ports, but does not attempt to include query parameters.

Appendix G, API Clarifications 59

HttpSession.setMaxInactivelnterval()

This method returns a StringBuffer instead of a String so that the URL can be
modified efficiently by the servlet

Clarification

To determine the server name part of the requested URL, Enterprise Server first
tries the to use the "Host" header and then looks at the value of Server Nane in
magnus. conf . The server name by default is the machine name. But this value is
editable while installing Enterprise Server 4.0. If the server name has been
changed, HttpUti | s. get Request URL might not return the host name that is
needed to reconstruct the request.

For example, suppose the request is htt p: // abc/ i ndex. ht ni . However, the
server name has been changed to xyz. In this case, Ht t pUti | s. get Request URL()
might return htt p: / / xyz/ i ndex. ht i , Which is not the original URL that was
requested.

HttpSession.setMaxInactivelnterval()

public int setMaxlnactivelnterval (int interval);

Sets the amount of time that a session can be inactive before the servlet engine
is allowed to expire it.

Clarification
The returned i nt is the previous value.

It is not possible to set the maximum inactive interval so that the session never
times out. The session will always have a timeout value.

If you pass a negative or zero value, the session expires immediately.

GenericServlet.getinitParameter() and
getinitParameterNames()

public String getlnitParaneter(String nane);

60 Programmer’s Guide to Servlets in Enterprise Server 4.0

ServletContext.getContext()

public String getlnitParaneter(String nane);

This method returns a String containing the value of the servlet's named
initialization parameter, or null if this parameter does not exist.

public Enuneration getlnitParanmeterNanes();
This method returns an enumeration of String objects containing the names of
the initialization parameters for the calling servlet. If the calling servlet has no

initialization parameters, get I ni t Par anet er Nanes returns an empty
enumeration.

Clarification

For servlets running on Enterprise Server 4.0, the methods get | ni t Par anet er
and get I ni t Par anet er Names for the class Servi et Confi g only work for servlets
that are invoked through virtual path translations. The same restriction applies
to the convenience methods of the same names in the class Generi cServl et
which invoke the corresponding methods on Ser vl et Confi g.

For information about setting virtual path translations, see the section
Specifying Servlet Virtual Paths in Chapter 1, “Using Servlets and
JavaServerPages.”

These methods do not work if the servlet is invoked by a client request that
specifies a servlet in a registered servlet directory rather than using a virtual
path translation to access the servlet.

ServletContext.getContext()

public Servl et Context getContext(String uripath);

Returns the servlet context object that contains servlets and resources for a
particular URI path, or null if a context cannot be provided for the path.

Clarification

This method only works if both the following conditions are true:

Appendix G, API Clarifications 61

RequestDispatcher.forward() and include()

= the servlet whose context is being obtained (that is, the servlet pointed to
by uri pat h) has been configured either through the Servlets>Configure
Servlet attributes property of the Server Manager interface or by editing
servl ets. properties.

= the servlet whose context is being obtained has been loaded.

Enterprise Server 4.0 does not load a servlet specified by a URI when
get Cont ext () is called from another servlet to get the context of an
unloaded servlet.

RequestDispatcher.forward() and include()

public void forward(Servl et Request request, ServletResponse response)
throws Servl et Exception, | COException;

Used for forwarding a request from this servlet to another resource on the web
server. This method is useful when one servlet does preliminary processing of a
request and wants to let another object generate the response.

The request object passed to the target object will have its request URL path
and other path parameters adjusted to reflect the target URL path of the target
object.

You cannot use this method if a Ser vl et Qut put St r eam Object or Print Wi ter
object has been obtained from the response. In that case, the method throws an
111 egal St at eExcepti on.

public void include(Servl et Request request, ServletResponse response)
throws Servl et Exception, | COException

Used for including the content generated by another server resource in the
body of a response. In essence, this method enables programmatic server-side
includes. The request object passed to the target object will reflect the request
URL path and path info of the calling request. The response object only has
access to the calling servlet's Ser vl et Qut put St reamobject or Print Wi ter
object.

An included servlet cannot set headers. If the included servlet calls a method
that needs to set headers (such as cookies), the method is not guaranteed to
work. As a servlet developer, you must ensure that any methods that might

62 Programmer’s Guide to Servlets in Enterprise Server 4.0

Request.getinputStream() and getReader()

need direct access to headers are properly resolved. To ensure that a session
works correctly, start the session outside the included servlet, even if you use
session tracking.

Clarification

In Enterprise Server 4.0, the di spat cher . f orwar d() method may or may not
throw an 111 egal St at eExcepti on when either witer or out put Streamhave
been obtained. This behavior follows the 2.2 draft and is needed for JSP error
page handling. It throws the exception only if the actual data has been flushed
out and sent to the client. Otherwise, the data pending in the buffer is simply
discarded.

In the case of servlets in registered servlet directories and JSP, i ncl ude()
flushes the output and headers before doing the include, which effectively
causes any further calls to set Header () to have no effect. The same behavior
occurs when forwarding to non-servlet URIs (like cgis or static files). In the case
of statically-defined uri mapping rules set Header () might work until it exceeds
the buffer.

The forward() and i ncl ude() methods may throw a Servl et Excepti on if the
target URI is identified as an unsafe URI (that is, it includes insecure path
characters suchas//,/./,/../ and/., /.. (and also ./ for NT) at the end of
the URI.

Request.getlinputStream() and getReader()

There are two ways for a servlet to read the raw data posted by a client:

= by obtaining the InputStream through the request . I nput Strean{) method,
an older method.

= by obtaining a BufferedRead through the request . get Reader () method, a
method in use since 2.0.

Appendix G, API Clarifications 63

Request.getinputStream() and getReader()

Clarification

A servlet will hang if it attempts to use an InputStream to read more data than is
physically available. (To find how much data is available, use

request . get Cont ent Lengt h() .) However, if the servlet reads data using a
BufferedReader returned from a call to get Reader (), the allowed content
length is automatically taken into the account.

64 Programmer’s Guide to Servlets in Enterprise Server 4.0

A

about this book 3

accessing
JSP 8
request object in JSP 29
servlets 8

activating
JSP 9
servlets 9

API
clarifications 59

API reference
JavaBeans 7
JSP 7
servlets 6

AttachCurrentThread 54

B

beans 7
example of accessing from JSP 31
examples directory 21

bookstore
examples directory 21

C
cache_dir

optional parameter to NSServletEarlylnit 45
cache directories 18

CatchSignals
optional parameter to NSServletLatelnit 46

clarifications
of APl 59

ClassCache 18

classpath

for JRE and JDK 17

for VM 19

for servlets 12

JVM parameter 19
compiler

JVM parameter 19
compiling

servlets 6
configuring

global servlet properties 10

individual servlets 12

JRE/IDK paths 16

JVM 19, 53

D

debugging
enabling 20
servlets remotely 55

deleting
version files 18

DetachCurrentThread 54

directives
for enabling servlets 45

directories
for servlets 11

DISPLAY tag
example 29
JSP 29

doGet() method 23, 26

E

edemo
examples directory 21

Index 65

enableClassGC 54

enable class GC
JVM parameter 20

enable debug
JVM parameter 20

enabling
JDK or JRE 16
JSP 8
MMapSessionManager 43
servlets 9
session managers 40
SimpleSessionManager 41

examples
DISPLAY tag 29
form that invokes a servlet 24
form that invokes JSP 31
JSP 29
JSP accessing beans 31
location in the build 21
servlets 22
servlet that parses input parameters 24
shipped in the build 21
simple servlet 22
virtual servlet path 14

F

file extensions
.class 11
Jsp 8, 47
forms
example of invoking JSP 31
example of invoking servlets 24

forward() 62

G
garbage collection

enabling 20
GenericServlet.getInitParameter() 60
getContext() 61
getInitParameter() 60, 61
getInitParameterNames() 60

66 Programmer’s Guide to Enterprise Server 4.0

global servlet properties
configuring 10

H

HttpServlet 23

HttpServletRequest
more info 44

HttpSession
more info 44

HttpSession.setMaxInactivelnterval() 60
HttpUtils.getRequestURL() 59

include() 62

INCLUDEIF
JSP tag 34

input parameters
accessing in JSP 33
parsing in servlets 24

installing
JRE or IDK 7
servlets 8

Intuitve Systems
web site 57

J
jars
classpath 19
JavaBeans 7
specifying classpath 19
Java Development Kit
see JDK

Java Runtime Environment
see JRE

JavaServerPages
see JSP

Java Servlet APl 6

Java Virtual Machine
see JVM

Java Virtual Machine Specification 54

JDK 7
downloading 7
enabling 16
installing 7
setting path 16
versions 16

JT 19

JRE 7
enabling 16
installing 7
setting path 16

JSDK support 6

JSP 6
accessing beans example 31
accessing input parameters 33
accessing Java 6
accessing request object 29
activating 9
API reference 7
cache directory 18
enabling 8

jvmll.conf 19, 53
jvm12.conf 19, 53

JVM parameters
classpath 19
compiler 19
enable class GC 20
enable debug 20
maximum heap size 19
minimum heap size 19
option 19
OPTITDIR 19
profiler 19
verbose mode 20

M

magnus-internal/jsp 47

make
examples directory 22

maximum heap size
JVM parameter 19

maxSessions

example of invoking from forms 31 parameter for MMapSessionManager 43
examples 29 parameter for SimpleSessionManager 41
examples directory 22 maxValuesPerSession

see also JSP tags parameter for MMapSessionManager 43

serving 8 maxValuesSize
Eg?rféfysmg Classpath for beans 19 parameter for MMapSessionManager 43
using Server Manager interface 9 minimum heap size
ISP tags JVM parameter 19
DISPLAY 29 MMapS(_assionManager 18, 42
INCLUDEIF 34 enabling 43
USEBEAN 34 multiple servlet directories 11
just-in-time compiler 19 multi-process mode
VM for more info 40
catching thread dumps 46
configuration 53 N
configuring 19
more info 54 NSES_JDK 17
specification 54 NSES_JRE 17
jvm.conf 19 NSHttpSessionManager 42

jvm.stickyAttach 54 NSServletEarlyInit 45

Index 67

NSServletLatelnit 45 reloading

NSServletLayer.jar 42 serviets 10
reload interval 10
O remote profiling 57
obj.conf 45 remote servlet debuggin 55
Optimizeit Request.getInputStream() 63
purchasing 57 Request.getReader() 63
option request:params property 32
JVM parameter 19 RequestDispatcher.forward() 62
OPTITDIR RequestDispatcher.include() 62
JVM parameter 19 request object
accessing in JSP 29
P rules.properties 49, 50
path
to JRE or JDK 8, 16 S
path translations Server Manager interface
specifying 13 for managing servlets and JSP 9
persistent session manger 42 servform.htm 24
preface 3 serving
process mode servlets and JSP 8
for more info 40 servlet.properties 49
prJO\];il:/(ler arameter 19 servietl. 25
profilinrg)] Servlet Args 12

ServletByExt 10
Servlet Classpath 12

servlets remotely 57
property attribute

of DISPLAY tag 29 Servlet Code (class name) 12
ServletContext.getContext() 61
R servlet directories 11

reaper() method default directory 11

MMapSessionManager 43 Servlet Name 12
SimpleSessionManager 41 servlets 6

reaplnterval accessing from clients 8
parameter for MMapSessionManager 43 accessing session data 44
parameter for SimpleSessionManager 41 activating 9

API clarifications 59

registered servlet directories 11 AP reference 6
registgr_ing cache directories 18
individual servlets 12 compiling 6

servlet directories 11

68 Programmer’s Guide to Enterprise Server 4.0

configuring global properties 10
configuring individual servlets 12
debugging remotely 55

example of accessing 11
example of invoking from forms 24
examples 22

parsing input parameters 24
reloading 10

remote profiling 57

serving 8

session managers 39

sessions 39

specifying virtual paths 13

using 5

using Server Manager interface 9
virtual path translation 8

servlets.jar 6
servlets.properties 49

Servlets API Class Reference 59
SessionData 18

session data
accessing 44

Session Manager 10

session managers 39
MMapSessionManager 42
persistent 42
SimpleSessionManager 41
specifying 40

sessions 39
accessing from servlets 44
examples directory 22
overview 39

setMaxInactivelnterval() 60

shoes.jsp 32
source code 34

simple servlet example 22

SimpleSession
source code 42

SimpleSessionManager 41
enabling 41
source code 42

single process mode

for more info 40
snoop.jsp 30
source code

SimpleSession 42
SimpleSessionManager 42

specifying
JDK or JRE 7
servlet directories 11
session managers 40
virtual servlet paths 13

Startup Servlets 10
stickyAttach 54

T

timeOut
parameter for MMapSessionManager 43
parameter for SimpleSessionManager 41

U

unsafe URIs 63

USEBEAN
JSP tag 34

using
servlets and JSP 5

\Y

verboseMode 54
verbose mode
JVM parameter 20
version files 18
deleting 18

virtual paths
example 14
specifying 13

Index 69

70 Programmer’s Guide to Enterprise Server 4.0

Programmer’s Guide to Servlets in Enterprise Server 4.0
Contents
About This Book
1. Using Servlets and JavaServerPages
Servlets
JavaServer Pages
What Does the Server Need to Run Servlets and JSP?
Serving Servlets and JSP
Using the Server Manager Interface to Specify Servlet Behavior and At-
tributes
Activating Servlets and JSP
Configuring General Servlet Properties
Registering Servlet Directories
Registering Individual Servlets
Specifying Servlet Virtual Paths
Configuring JRE/JDK Paths
Deleting Version Files
Configuring JVM
2. Servlet and JSP Examples
Examples Shipped with Enterprise Server 4.0
Servlet Examples
A Simple Servlet Example
Example of a Servlet that Parses Input Parameters
JSP Examples
JSP that Accesses the Request Object
JSP that Responds to a Form and Uses Java Beans
Appendix A. Session Managers
Session Overview
Specifying a Session Manager
SimpleSessionManager
Parameters
Enabling SimpleSessionManager
Source Code for SimpleSessionManager
MMapSessionManager
Parameters
Enabling MMapSessionManager
How Do Servlets Access Session Data?
Appendix B. Servlet Settings in obj.conf
Directives for Enabling Servlets
Directives for Registered Servlet Directories
JSP
Appendix C. servlets.properties and rules.properties

71

servlet.properties
rules.properties
Appendix D. JVM Configuration
Appendix E. Remote Servlet Debugging
Appendix F. Remote Servlet Profiling
Appendix G. API Clarifications
HttpUtils.getRequestURL()
HttpSession.setMaxInactivelnterval()
GenericServlet.getInitParameter() and getlnitParameterNames()
ServletContext.getContext()
RequestDispatcher.forward() and include()
Request.getinputStream() and getReader()
Index

72 Programmer’s Guide to Servlets in Enterprise Server 4.0

	About This Book
	Using Servlets and JavaServerPages
	Servlets
	JavaServer Pages
	What Does the Server Need to Run Servlets and JSP?
	Serving Servlets and JSP
	Using the Server Manager Interface to Specify Servlet Behavior and Attributes
	Activating Servlets and JSP
	Configuring General Servlet Properties
	Registering Servlet Directories
	Registering Individual Servlets
	Specifying Servlet Virtual Paths
	Configuring JRE/JDK Paths
	Deleting Version Files
	Configuring JVM

	Servlet and JSP Examples
	Examples Shipped with Enterprise Server 4.0
	Servlet Examples
	A Simple Servlet Example
	Example of a Servlet that Parses Input Parameters

	JSP Examples
	JSP that Accesses the Request Object
	JSP that Responds to a Form and Uses Java Beans

	Session Managers
	Session Overview
	Specifying a Session Manager
	SimpleSessionManager
	Parameters
	Enabling SimpleSessionManager
	Source Code for SimpleSessionManager

	MMapSessionManager
	Parameters
	Enabling MMapSessionManager

	How Do Servlets Access Session Data?

	Servlet Settings in obj.conf
	Directives for Enabling Servlets
	Directives for Registered Servlet Directories
	JSP

	servlets.properties and rules.properties
	servlet.properties
	rules.properties

	JVM Configuration
	Remote Servlet Debugging
	Remote Servlet Profiling
	API Clarifications
	HttpUtils.getRequestURL()
	HttpSession.setMaxInactiveInterval()
	GenericServlet.getInitParameter() and getInitParameterNames()
	ServletContext.getContext()
	RequestDispatcher.forward() and include()
	Request.getInputStream() and getReader()

	Index

