
Contents

This file was last modified on 8/12/99

About This Book ..3

Chapter 1 Using Servlets and JavaServerPages ...5

Servlets ...6

JavaServer Pages ..6

What Does the Server Need to Run Servlets and JSP? ...7

Serving Servlets and JSP ..8

Using the Server Manager Interface to Specify Servlet Behavior and Attributes 9

Activating Servlets and JSP ..9

Configuring General Servlet Properties ..10

Registering Servlet Directories ..11

Registering Individual Servlets ..12

Specifying Servlet Virtual Paths ..13

Configuring JRE/JDK Paths ...16

Deleting Version Files ...18

Configuring JVM ..19

Chapter 2 Servlet and JSP Examples ..21

Examples Shipped with Enterprise Server 4.0 ...21

Servlet Examples ..22

A Simple Servlet Example ...22

Example of a Servlet that Parses Input Parameters24

JSP Examples ...29

JSP that Accesses the Request Object ..29

JSP that Responds to a Form and Uses Java Beans31
Contents i

Appendix A Session Managers .. 39

Session Overview .. 39

Specifying a Session Manager .. 40

SimpleSessionManager .. 41

Parameters .. 41

Enabling SimpleSessionManager ... 41

Source Code for SimpleSessionManager ... 42

MMapSessionManager ... 42

Parameters .. 43

Enabling MMapSessionManager .. 43

How Do Servlets Access Session Data? .. 44

Appendix B Servlet Settings in obj.conf .. 45

Directives for Enabling Servlets .. 45

Directives for Registered Servlet Directories ... 46

JSP .. 47

Appendix C servlets.properties and rules.properties 49

servlet.properties ... 49

rules.properties .. 50

Appendix D JVM Configuration .. 53

Appendix E Remote Servlet Debugging .. 55

Appendix F Remote Servlet Profiling .. 57

Appendix G API Clarifications ... 59

HttpUtils.getRequestURL() .. 59

HttpSession.setMaxInactiveInterval() ... 60

GenericServlet.getInitParameter() and getInitParameterNames() 60

ServletContext.getContext() .. 61

RequestDispatcher.forward() and include() .. 62

Request.getInputStream() and getReader() .. 63

Index .. 65
ii Programmer’s Guide to Servlets in Enterprise Server 4.0

About This Book
This book was last updated 8/12/99.

This book discusses how to enable and install Java servlets and
JavaServerPages (JSP) in Enterprise Server 4.0.

This book has the following chapters and appendices:

• Chapter 1, “Using Servlets and JavaServerPages.”

This chapter discusses how to enable and install servlets and
JavaServerPages in Enterprise Server 4.0. It explains how to specify settings
for servlets and for the JRE, JDK and JVM by using the Server Manger
interface or by editing configuration files.

• Chapter 2, “Servlet and JSP Examples.”

This chapter discusses example servlets and JSP.

• Appendix A, “Session Managers.”

This appendix discusses the session managers provided with Enterprise
Server and gives an overview of a sample session manager that you can use
to define your own session managers.

• Appendix B, “Servlet Settings in obj.conf.”

This appendix discusses how the configuration file obj.conf changes
depending on the settings for servlets and JSP.

• Appendix C, “servlets.properties and rules.properties.”

This appendix discusses the servlets.properties file, which contains
configuration information for servlets, and the rules.properties file
which defines virtual paths for servlets.

• Appendix D, “JVM Configuration.”

This appendix discusses which configuration files to edit if you want to
manually specify JVM configuration information.

• Appendix E, “Remote Servlet Debugging.”

This appendix discusses how to enable remote debugging for servlets.

• Appendix F, “Remote Servlet Profiling.”

This appendix discusses how to enable remote profiling for servlets.
 , 3

• Appendix G, “API Clarifications.”

This chapter discusses methods in the Servlets API that behave marginally
differently in Enterprise Server than specified in the Sun Microsystems’
Servlets API documentation or where the behavior documented by Sun
Microsystems is ambiguous.
4 Programmer’s Guide to Enterprise Server 4.0

C h a p t e r

1
Using Servlets and JavaServerPages
Enterprise Server 4.0 supports servlets and JavaServer Pages (JSP). This chapter
gives a brief overview of servlets and JavaServer Pages and discusses how to
enable and configure them in Enterprise 4.0.

The sections in this chapter are:

• Servlets

• JavaServer Pages

• What Does the Server Need to Run Servlets and JSP?

• Serving Servlets and JSP

• Using the Server Manager Interface to Specify Servlet Behavior and
Attributes

• Activating Servlets and JSP

• Configuring General Servlet Properties

• Registering Servlet Directories

• Registering Individual Servlets

• Specifying Servlet Virtual Paths

• Configuring JRE/JDK Paths

• Deleting Version Files

• Configuring JVM
Chapter 1, Using Servlets and JavaServerPages 5

Servlets
Servlets
Java servlets are server-side Java programs that web servers can run to generate
content in response to a client request in much the same way as CGI programs
do. Servlets can be thought of as applets that run on the server side without an
interface. Servlets are invoked through URL invocation

Netscape Enterprise Server 4.0 includes support for JavaSoft’s Servlet API at the
level of the Java Servlet Development Kit (JSDK) 2.1.

To develop servlets, use Sun Microsystems’ Java Servlet API. For information
about using the Java Servlet API, see the documentation provided by Sun
Microsystems at:

http://www.javasoft.com/products/servlet/index.html

Netscape Enterprise Server 4.0 includes all the files necessary for developing
Java Servlets. The servlets.jar file is in the ES4.0 installation directory at:

/bin/https/jar

When compiling servlets, make sure the servlets.jar file is accessible
variable to your Java compiler.

JavaServer Pages
Enterprise Server 4.0 supports JavaServerPages (JSP) to the level of JSP API 0.92
compliance.

A JavaServerPage (JSP) is a page much like an HTML page, that can be viewed
in a web browser. However, as well as containing HTML tags, it can include a
set of JSP tags that extend the ability of the web page designer to incorporate
dynamic content in a page. These tags provide functionality such as displaying
property values and using simple conditionals.

One of the main benefits of JavaServer Pages is that, like HTML pages, they do
not need to be compiled. The web page designer simply writes a page that uses
HTML and JSP tags, and puts it on their web server. The web page designer
does not need to learn how to define Java classes or use Java compilers.

JSP pages can access full Java functionality in the following ways:

• by embedding Java code directly in scriptlets in the page
6 Programmer’s Guide to Servlets in Enterprise Server 4.0

What Does the Server Need to Run Servlets and JSP?
• by accessing Java beans

• by using server-side tags that include Java servlets

Both beans and servlets are Java classes that need to be compiled, but they can
be defined and compiled by a Java programmer who then publishes the
interface to the bean or the servlet. The web page designer can access a pre-
compiled bean or servlet from a JSP page without having to do any compiling
themselves.

For information about creating JavaServer Pages, see Sun Microsystem’s
JavaServer Pages 0.92 spec in the build in the manuals/https/servlets/jsp092
subdirectory .

For information about Java Beans, see Sun Microsystem’s JavaBeans web page
at:

http://www.javasoft.com/beans/index.html

What Does the Server Need to Run Servlets
and JSP?

Enterprise Server 4.0 includes the Java Runtime Environment (JRE) but not the
Java Development Kit (JDK). The server can run servlets using the JRE, but it
needs the JDK to run JSP. If you want to run JSP, you must tell the Enterprise
Server to use a custom JDK.

Enterprise Server 4.0+ requires you to use official versions of JDK, with
different platforms requiring different versions. For example, Sun Solaris
requires JDK1.2 or higher; HP-UX requires JDK 1.1 (C.01.17.01 or any higher
1.1 version); and Windows NT requires a JDK of 1.2.2 or higher. Check the
Installation and Migration Guide and the latest release notes for updates on
required JDK versions.

Note On Sun Solaris, the JRE included is the JRE 1.2.2 reference implementation from
JavaSoft. For performance, it is recommended to use the latest SunSoft
production release of JDK, currently 1.2.1_03.

JDK 1.2 (and other JDK versions) are available from Sun Microsystems at:

http://www.javasoft.com/products/jdk/1.2/

You can specify the path to the JDK in either of the following ways:
 Using Servlets and JavaServerPages 7

Serving Servlets and JSP
• You can specify the path during the server installation process.

When you install Enterprise Server 4.0, one of the dialog boxes in the
installation process asks if you want to use a custom Java Development Kit
(JDK), and if so, you can specify the path to it.

• You can specify it after the server is installed.

To specify the path to the JDK, use the “Configure JRE/JDK Paths” page in
the Servlets tab of the Server Manager, as discussed in the section
"Configuring JRE/JDK Paths."

Whether you specify the path to the JDK during installation or later, the path is
the folder in which you installed the JDK.

Serving Servlets and JSP
Enterprise Server 4.0 includes an appropriate version of the Java runtime
environment (JRE) for running servlets. For the server to be able to serve JSP,
you must specify a path to a Java Development Kit (JDK) as discussed in the
section "What Does the Server Need to Run Servlets and JSP?."

For the server to serve servlets and JSP, servlet activation must be enabled. (See
the section "Activating Servlets and JSP" for details.)

When the servlet engine is activated, you have a choice of two ways to make a
servlet accessible to clients:

• Put the servlet class file in a directory that has been registered with the
Enterprise Server as a servlet directory. For more information, see
"Registering Servlet Directories."

• Define a servlet virtual path for the servlet. In this case, the servlet class can
be located anywhere in the file system or even reside on a remote machine.
For more information, see "Specifying Servlet Virtual Paths."

No special steps are needed to enable JSP pages other than making sure that
JSP is activated on the Enterprise Server. So long as JSP activation is enabled,
the Enterprise Server treats all files with a .jsp extension as JavaServer Pages.
(Do not put JSP files in a registered servlets directory, since the Enterprise
Server expects all files in a registered servlet directory to be servlets.)
8 Programmer’s Guide to Servlets in Enterprise Server 4.0

Using the Server Manager Interface to Specify Servlet
In detail, to enable the Netscape Enterprise Server to serve servlets and JSP
pages, do the following:

1. Activating Servlets and JSP. (This is the only step needed to enable JSP.)

2. Configuring General Servlet Properties

3. Registering Servlet Directories

4. Registering Individual Servlets if Needed

5. Specifying Servlet Virtual Paths if Desired

6. Configuring JVM if Necessary

Using the Server Manager Interface to Specify
Servlet Behavior and Attributes

In the Enterprise Server 4.0 Server Manager interface, you can use the Servlets
tab to specify settings for servlets. For information about using the interface for
working with servlets, see the following subsections in the "Servlets Tab"
section of Appendix F, "The Enterprise Server User Interface" in the "Enterprise
Server Administration Guide:"

• The Enable/Disable Servlets Page

• Configure JRE/JDK Page

• The Servlet Directory Page

• The Configure Global Attributes for Servlets Page

• The Configure Servlet Attributes Page

• The Configure Servlet Virtual Path Translation Page

• The Configure JVM Attributes Page

• The Delete Version Files Page

Activating Servlets and JSP
To enable and disabled servlets and JSP in Enterprise Server 4.0, use the
Servlets>Enable/Disable Servlets page in the Server Manager interface.
 Using Servlets and JavaServerPages 9

Configuring General Servlet Properties
If servlets are enabled, JSP can be enabled or disabled. However, if you disable
servlets, JSP is automatically also disabled. In this case, if you enable servlets
later, you will need to re-enable JSP also if desired.

To enable servlets programmatically, add the following lines to obj.conf.
These directives first load the shared library containing the servlet engine,
which is in NSServletPlugin.dll on Windows NT or NSServletPlugin.so on
Unix. Then they initialize the servlet engine.

Init shlib="server_root/bin/https/bin/NSServletPlugin.dll/so"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,NSServle
tService" shlib_flags="(global|now)" fn="load-modules"

Init EarlyInit="yes" fn="NSServletEarlyInit"

Init LateInit="yes" fn="NSServletLateInit"

In the default object in obj.conf, add the following NameTrans directive:

NameTrans fn="NSServletNameTrans" name="servlet"

By default, regardless of whether servlets are enabled or disabled, the file
obj.conf contains additional objects with names such as servlet, jsp, and
ServletByExt. Do not delete these objects. If you delete them, you will no
longer be able to activate servlets through the Server Manager.

Configuring General Servlet Properties
You can specify the following servlet properties:

• Startup Servlets -- servlets to load when the Enterprise Server starts up.

• Session Manager -- the session manager for servlets, if applicable. For more
information about the session manager, see Appendix A, “Session
Managers.”

• Reload Interval -- the time period that the server waits before re-loading
servlets and JSPs if they have changed on the server. The default value is 5.

You can set these attributes interactively in the Servlets>Configure General
Servlet Properties page in the Server Manager interface. Alternatively, you can
edit the configuration file servlet.properties in the server’s config
directory.

The following code shows an example of the settings in servlet.properties:
10 Programmer’s Guide to Servlets in Enterprise Server 4.0

Registering Servlet Directories
General properties:
servlets.startup=hello
servlets.config.reloadInterval=5
servlets.config.docRoot=C:/Netscape/Server4/docs
servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager

Registering Servlet Directories
One of the ways to make a servlet accessible to clients is to put it into a
directory is registered with the Enterprise Server as a servlet directory. Servlets
in registered servlet directories are dynamically loaded when needed. The
server monitors the servlet files and automatically reloads them on the fly as
they change.

For example, if the SimpleServlet.class servlet is in the servlet
subdirectory of the server’s document root directory, you can invoke the servlet
by pointing the web browser to:

http://your_server/servlet/SimpleServlet

You can register any number of servlet directories for the Enterprise Server.
Initially, the Enterprise Server has a single servlet directory, which is
server_root/docs/servlet/ (For example, d:/netscape/server4/docs/
servlet.)

The Enterprise Server expects all files in a registered servlet directory to be
servlets. The server treats any files, including applets, in that directory that have
the .class extension as servlets. The Enterprise Server does not correctly serve
other files, such as HTML files or JSPs, that reside in that directory.

The server can have multiple servlet directories. You can map servlet
directories to virtual directories if desired. For example, you could specify that
http://poppy.my_domain.com/products/ invokes servlets in the directory
server_root/docs/servlet/january/products/servlets/.

To register servlet directories and to specify their URL prefixes, use the
Servlets>Servlet Directory page in the interface.

Alternatively, you can register servlet directories by adding appropriate
NameTrans directives to the default object in the file obj.conf, such as:

NameTrans fn="pfx2dir" from="/servlets"
dir="d:/netscape/server4/docs/servlet/january/products/servlets/"
name="ServletByExt"
 Using Servlets and JavaServerPages 11

Registering Individual Servlets
Registering Individual Servlets
The Enterprise Server treats any file in a registered servlet directory as a servlet.
There is no need to register individual servlets that reside in these directories
unless either of the following criteria apply:

• The servlet takes input parameters that are not passed through the request
URL.

• You want to set up virtual URLs for the servlet.

If either of these conditions is true, register the individual servlet by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface.
Alternatively you can edit the file servlet.properties to add an entry for the
servlet.

When registering an individual servlet, specify the following attributes:

• Servlet Name -- The Enterprise Server uses this value as a servlet identifier
to internally identify the servlet. (This identifier is not part of the URL that is
used to invoke the servlet, unless by coincidence the identifier is the same
as the class code name.)

• Servlet Code (class name) -- the name of the class file. You do not need to
specify the .class extension.

• Servlet Classpath -- This is the absolute pathname or URL to the directory or
zip/jar file containing the servlet. The classpath can point anywhere in the
file system. The servlet classpath may contain a directory, a .jar or .zip
file, or a URL to a directory.(You cannot specify a URL as a classpath for a
zip or jar file.)

If the servlet classpath is not a registered servlet directory, you must
additionally provide a servlet virtual path for it (as discussed in" Specifying
Servlet Virtual Paths") to make the servlet accessible to clients.

Enterprise Server supports the specification of multiple directories, jars,
zips, and URLs in the servlet classpath.

• Servlet Args -- a comma delimited list of additional arguments for the servlet
if required.

For example, in Figure 1.1, the Servlets>Configure Servlet Attributes page of the
Server Manager interface shows configuration information for a servlet whose
class file buynow1A resides in the directory D:/Netscape/server4/docs/
12 Programmer’s Guide to Servlets in Enterprise Server 4.0

Specifying Servlet Virtual Paths
servlet/buy/. (Note that the final / is omitted in the interface.) This servlet is
configured under the name BuyNowServlet. It takes additional arguments of
arg1=45, arg2=online, arg3="quick shopping".

Figure 1.1 Configuring attributes for an individual servlet

The following code shows an example of the configuration information for the
same servlet in servlet.properties:

servlet.BuyNowServlet.classpath=D:/Netscape/server4/docs/servlet/buy
servlet.BuyNowServlet.code=BuyNow1A
servlet.BuyNowServlet.initArgs=arg1=45,arg2=online,arg3="quick shopping"

Note that you can specify multiple values as the servlet classpath if needed.

Specifying Servlet Virtual Paths
One way of making servlets available to clients is to put them in registered
servlet directories. Another way is to define servlet virtual paths for individual
servlets. For example, you could specify that the URL

http://poppy.my_domain.com/plans/plan1

invokes the servlet defined in the directory

server_root/docs/servlets/plans/releaseA/planP2Version1A.class

You can set up servlet virtual paths for servlets that reside anywhere, be it on a
local or remote file system, and be it in or out of a registered servlet directory.
 Using Servlets and JavaServerPages 13

Specifying Servlet Virtual Paths
To specify a servlet virtual path, use the Servlets>Configure Servlet Virtual Path
Translation page in the Server Manager interface. In this page, specify the
virtual path name and the servlet name. You can alternatively manually edit the
rules.properties configuration file to add a servlet virtual path. Only
servlets for which a virtual path has been set up can use initial arguments
(See “GenericServlet.getInitParameter() and getInitParameterNames()” for
iinformation about initial arguments.)

Before using a servlet virtual path, a servlet identifier must be added for the
servlet in the Servlets>Configure Servlet Attributes page of the interface (or in
the servlets.properties configuration file).

Virtual Servlet Path Example

This example discusses how to specify that the logical URL:

http://poppy.my_domain.com/plans/plan1

invokes the servlet defined in

server_root/docs/servlet/plans/releaseA/planP2Version1A.class.

1. Specify the servlet identifier, class file, and class path.

In the Servlets>Configure Servlet Attributes page in the interface, do the
following:

• in the Servlet Name field, enter an identifier for the servlet, such as plan1A.
(Notice that this is not necessarily the same as the class file name).

• in the Servlet Code field, enter the name of the class file, which is
planP2Version1A. Don’t specify any directories. The .class extension is
not required.

• in the Servlet Class Path field, enter the absolute path name for the
directory, jar or zip file where the servlet class file resides, or enter a URL
for a directory. In this example, you would enter server_root/docs/
servlet/plans/releaseA. (For example: D:/netscape/server4/docs/
servlet/plans/releaseA.)

• in the Servlet Args field, enter the additional arguments that the servlet
needs, if any. (This example does not use extra arguments.)

Figure 1.2 shows the settings in the interface.
14 Programmer’s Guide to Servlets in Enterprise Server 4.0

Specifying Servlet Virtual Paths
Save the changes.

Figure 1.2 Specifying the servlet name, code, and class path

To make this change programmatically, add the following lines to the
configuration file servlet.properties:

servlet.plan1A.classpath=D:/Netscape/server4/docs/servlet/plans/
releaseA/

servlet.plan1A.code=planP2Version1A

2. Specify the virtual path for the servlet.

In the Servlets>Configure Servlet Virtual Path Translations page, do the
following:

• In the Virtual Path field, enter the virtual path name. Note that the server
name is implied as a prefix, so in this case you would only need to enter /
plans/plan1 to specify the virtual path http://poppy.mcom.com/plans/
plan1.

• In the Servlet field, enter the identifier for the servlet that is invoked by this
virtual path. This is the servlet identifier that you specified in the Configure
Servlet Attributes page, which in this case is plan1A.

Save the changes.

Figure 1.3 shows the settings in the interface.
 Using Servlets and JavaServerPages 15

Configuring JRE/JDK Paths
Figure 1.3 Adding a virtual path

To do this programmatically, add the following line to rules.properties:

/plans/plan1=plan1A

After this virtual servlet path has been established, if a client sends a request to
the server for the URL http://poppy.my_domain.com/plans/plan1, the
server sends back the results of invoking the servlet in server_root/docs/
servlet/plans/releaseA/plan2PVersion1A.class.

Configuring JRE/JDK Paths
When you install Enterprise Server 4.0, you can choose to install the Java
Runtime Environment (JRE) or you can specify a path to the Java Development
Kit (JDK).

The server can run servlets using the JRE, but it needs the JDK to run JSP. The
JDK is not bundled with the Enterprise Server, but you can download it for free
from Sun Microsystems at:

http://www.javasoft.com/products/jdk/1.2/

Enterprise Server 4.0+ requires you to use an official version of JDK1.2 on
Solaris and NT. On HP, AIX and IRIX use JDK 1.1.

Regardless of whether you choose to install the JRE or specify a path to the JDK
during installation, you can tell the Enterprise Server to switch to using either
the JRE or JDK at any time, by using the “Configure JRE/JDK Paths” page in the
Servlets tab. You can also change the path to the JDK in this page.
16 Programmer’s Guide to Servlets in Enterprise Server 4.0

Configuring JRE/JDK Paths
This page has the following fields:

• Change JRE or JDK

Select either the JRE or JDK radio button as desired.

• Path

Enter the path for the JRE or JDK. This is the directory where you installed
the JRE or JDK.

• Classpath

The class path includes the paths to the directories and jar files needed to
run the servlet engine, the servlet examples, and any other paths needed by
servlets that you add. Values are separated by semicolons. You can add new
values to the existing class path, but don’t delete the existing value since it
includes paths that are essential for servlet operation.

It is easiest to use the Server Manager interface to switch between the JRE and
the JDK, but you can also make the change programmatically, as follows:

• On Unix:

Edit the file server_root/https-admserv/start.jre.

If the server is currently using the JRE, this file has a variable NSES_JRE. To
enable the server to use a JDK, add the variable NSES_JDK whose value is
the JDK directory. You’ll also need to change the value of the NSES_JRE
variable.

If you're using JDK 1.2 or greater, NSES_JDK should point to the installation
directory for the JDK, while NSES_JRE should point to the JRE directory in
the installation directory for JDK (that is, jdk_dir/jre). For JDK 1.1.x,
NSES_JDK and NSES_JRE should both point to the installation directory for
the JDK.

• On Windows NT:

Add the path to the Java libraries to the extrapath setting in magnus.conf.

Edit the NSES_JDK and NSES_JRE variables in the registry
HKEY_LOCAL_MACHINE/SOFTWARE/Netscape/Enterprise/4.0/. If the
server is enabled to use the JDK, both these variables are needed. If the
server is to use the JRE, only the NSES_JRE variable should be set. If you're
using JDK 1.2 or greater, NSES_JDK should point to the installation directory
for the JDK, while NSES_JRE should point to the JRE directory in the
 Using Servlets and JavaServerPages 17

Deleting Version Files
installation directory for JDK (that is, jdk_dir/jre). For JDK 1.1.x,
NSES_JDK and NSES_JRE should both point to the installation directory for
the JDK.

Deleting Version Files
The server uses two directories to cache information for JavaServerPages (JSP)
and servlets:

• ClassCache

When the server serves a JSP page, it creates a .java and a .class file
associated with the JSP and stores them in the JSP class cache, in a directory
structure under the ClassCache directory.

• SessionData

If the server uses the MMapSessionManager session manager, it stores
persistent session information in the SessionData directory. (For more
information about session managers, see Appendix A, “Session Managers.”)

Each cache has a version file containing a version number that the server uses
to determine the structure of the directories and files in the caches. You can
clean out the caches by simply deleting the version file.

When the server starts up, if it does not find the version files, it deletes the
directory structures for the corresponding caches and re-creates the version
files. Next time the server serves a JSP page, it recreates the JSP class cache. The
next time the server serves a JSP page or servlet while using
MMapSessionManager session manager, it recreates the session data cache.

If a future upgrade of the server uses a different format for the caches, the
server will check the number in the version file and clean up the caches if the
version number is not correct.

You can delete the version files simply by deleting them from the ClassCache
or SessionData directories as you would normally delete a file or you can use
the Servlets>Delete Version Files page in the Server Manager to delete them.
After deleting one or both version files, be sure to restart the Enterprise Server
to force it to clean up the appropriate caches and to recreate the version files
before the server serves any servlets or JSPs.
18 Programmer’s Guide to Servlets in Enterprise Server 4.0

Configuring JVM
Configuring JVM
If necessary, you can configure parameters for JVM either by using the
Servlets>Configure JVM Attributes page in the Server Manager interface, or by
editing JVM.conf (or JVM11.conf or JVM12.conf, depending on which
version of JVM is being used).

The default settings in Enterprise Server for JVM are suitable for running
servlets. However, there may be times when you want change the settings. For
example, if a servlet or bean file uses a JAR file, add the JAR location to the
Classpath variable. To enable the use of a remote profiler, set the OPTITDIR
and Profiler variables.

The JVM parameters you can set are:

• Option -- You can set any options allowed by the vendor’s JVM.

• Profiler -- If you are using the Optimizeit! 3.0 profiler from Intuitive Systems,
enter the value optimizeit. For more information about this optimizer, see
the section Appendix F, “Remote Servlet Profiling.”

• OPTITDIR -- If you are using the Optimizeit! 3.0 profiler from Intuitive
Systems, enter the pathname for the directory where Optimizeit! resides, for
example, D:/App/IntuitiveSystems/OptimizeIt30D. For more information
about this optimizer, see the section "Appendix F, “Remote Servlet
Profiling.”."

• Minimum Heap Size -- determines the minimum heap size allocated for
Java.

• Maximum Heap Size -- determines the maximum heap size allocated to
Java.

• Compiler -- You can specify options to turn on and off JIT (just-in-time
compiler). See your JVM documentation for details.

• Classpath -- Enter additional classpath values as needed. For example, if a
JSP uses a bean that is packaged in a JAR, add the JAR path to the classpath.

The classpath must not include backslashes in directory names. If you use
backslashes in the directory path in the interface, the system automatically
converts the backslashes to forward slashes. However, if you edit the
jmv.conf (or jvm11.conf or jvm12.conf) file, do not use backslashes in
directory names.
 Using Servlets and JavaServerPages 19

Configuring JVM
• Enable Class GC -- Specifies whether or not to enable class garbage
collection. The default is yes.

• Verbose Mode -- Determines whether the JVM logs a commentary on what
it is doing, such as loading classes. The commentary appears in the error
log.

• Enable Debug -- You can enable or disable remote debugging. The default
is disabled. For more information about remote debugging, see the section
Appendix E, “Remote Servlet Debugging.”
20 Programmer’s Guide to Servlets in Enterprise Server 4.0

C h a p t e r

2
Servlet and JSP Examples
This chapter discusses some Servlet and JSP examples. It has the following
sections:

• Examples Shipped with Enterprise Server 4.0

• Servlet Examples

• JSP Examples

Examples Shipped with Enterprise Server 4.0
Enterprise Server4.0 comes with a set of example servlets and JSP files. You
can find them at the following location:

server_root/plugins/samples/servlets

This directory contains the following directories:

• beans -- Contains example Java Bean files.

• bookstore -- Contains files for an online bookstore example. This example
contains both servlets and JSPs.

• edemo -- Contains files for a general online store front. This example
contains both servlets and JSPs.
Chapter 2, Servlet and JSP Examples 21

Servlet Examples
• jsp -- Contains subdirectories that each contain example JavaServer Page
examples.

• make -- Contains example make files for servlets. These are common
makefiles containing rules that are included by all other makefiles.

• servlets -- Contains subdirectories that each contain example Java and
makefiles for servlet examples.

• sessions -- Contains code for SimpleSessionManager.java, which is the
default servlet session manager when the Enterprise Server runs in single
process mode. This directory also contains the code for
SimpleSession.java, which defines session objects, which are the
sessions managed by SimpleSessionManager. The source code for
SimpleSessionManager and SimpleSession are provided for you to use
as the starting point for defining your own session managers if desired. For
more information about sessions and session managers, see Appendix A,
“Session Managers.”

Servlet Examples
This section discusses two servlet examples as follows:

• A Simple Servlet Example -- generates a very simple page to be displayed in
a web browser.

• Example of a Servlet that Parses Input Parameters -- this servlet is used as a
form action.

You can find additional examples in the directory server_root/plugins/
samples/servlets/servlets.

These examples are simple, introductory examples. For information about using
the Java Servlet API, see the documentation provided by Sun Microsystems at:

http://www.javasoft.com/products/servlet/index.html

A Simple Servlet Example

The following example code defines a very simple servlet. This example is the
SimpleServlet example in the server_root/plugins/samples/servlets/
Simple1 directory.
22 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples
This servlet generates an HTML page that says "This is output from the
servlet." as shown in Figure 2.1

Figure 2.1 Output from SimpleServlet.class

This example defines the main servlet class as a subclass of HttpServlet and
implements the doGet method. The code is shown below:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
* This is a simple example of an HTTP Servlet that outputs

a very simple web page.
*/

public class SimpleServlet extends HttpServlet
{
/**
* Handle the GET method by building a simple web page.
*/

public void doGet (
HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{
PrintWriter out;
String title = "Simple Servlet Output";

// Set content type and other response header fields first
response.setContentType("text/html");

// Then write the data of the response
out = response.getWriter ();

out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>" + title + "</H1>");
out.println("<P>This is output from SimpleServlet.");
out.println(getServletInfo());
 Servlet and JSP Examples 23

Servlet Examples
out.println("</BODY></HTML>");
out.close();
}

}

Example of a Servlet that Parses Input
Parameters

This example demonstrates how to use a servlet as a form action. This example
involves the following components:

• servform.htm - a web page containing a form as shown in Figure 2.2.

• servlet1 -- a servlet that responds to the form.

servform.htm

This web page contains a form with the following elements:

• a text field named companyname

• three checkboxes named hosting, design and javadev

• a radio button named numberofpeople. The four possible values are
oneplus, tenplus, hundredplus and thousandplus

• a submit button

Figure 2.2 shows an example of the form in a web page:
24 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples
Figure 2.2 This form invokes a servlet as its action

The form’s method is GET and the action is servlet1.class.

<FORM METHOD=GET ACTION="servlet/servlet1.class">

Click the following link to see the form: (View the source to see the source
code).

servform.htm

servlet1

This servlet parses the input parameters received from the form. It displays the
query string that invoked it, and then parses and displays the input parameters
received from the form. Finally it constructs a message that is customized
according to the input parameters received. An example is shown in Figure 2.3.
 Servlet and JSP Examples 25

Servlet Examples
Figure 2.3 An example response from the servlet

This class implements the doGet() method, since it will be invoked by a form
that uses the GET method. If the form used the POST method, the class would
need to implement the doPost() method.

The source code is shown below.You can also access it through this link:
servlet1.java.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
* This is a simple example of an HTTP Servlet that responds to input
* parameters such as form input.
*/

public class servlet1 extends HttpServlet
{
/**
* The doGet method parses the input parameters and constructs
* an output page based on the information received from the form.
*/

public void doGet (
HttpServletRequest request,
HttpServletResponse response
26 Programmer’s Guide to Servlets in Enterprise Server 4.0

Servlet Examples
) throws ServletException, IOException

{
PrintWriter out;
String title = "Example Form Response";

// Set content type and other response header fields first.
response.setContentType("text/html");

// Get an output stream.
out = new java.io.PrintWriter(response.getOutputStream ());

// Print the HTML, HEAD, and TITLE tags.
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>" + title + "</H1>");
out.println("<P>This page was generated by " +
"a servlet.</P>");

// Print the query string just for informational purposes.
String queryString = request.getQueryString();
out.println("<P>The query string is <CODE>" + queryString +
"</CODE>");

// Extract the values of the parameters sent by the form.
// If a parameter does not exist, getParameter() returns null.

String numberofpeople = request.getParameter("numberofpeople");
String companyname = request.getParameter("companyname");
String companysize = "";
String design = request.getParameter("design");
String javadev = request.getParameter("javadev");

// Print out the input parameters

out.println("<P>The values of the parameters sent by the form are:");
out.println("<BLOCKQUOTE><I>number of people: " + hosting);
out.println("
company name: " + hosting);
out.println("
hosting: " + hosting);
out.println("
design: " + design);
out.println("
javadev: " + javadev + "</I></BLOCKQUOTE>");

// Construct a customized message encouraging
// the viewer to use our company for its web needs.

// First test if any skills are needed.
// If not, construct a generic message.
// If skills are needed, create an unordered list with
// a bullet item for each skill selected.

String skillsneeded = "";
if ((hosting == null) && (design == null) && (javadev == null))
{skillsneeded = " all your web server requirements.";
}

 Servlet and JSP Examples 27

Servlet Examples
else
 { skillsneeded = "";

if ((hosting != null) && (hosting.equals("on")))
skillsneeded += "Web hosting";

if ((design != null) && (design.equals("on")))
skillsneeded += "Web page design";

if ((javadev != null) && (javadev.equals("on")))
skillsneeded += "Java servlet and JSP development ";

skillsneeded = skillsneeded + "";
}

// Figure out what size company sent the form.
// Choices are small, small to medium-size, medium-size and large.
if (numberofpeople == null)

numberofpeople = "size unknown";
else if (numberofpeople == "oneplus")

companysize = "small ";
else if (numberofpeople == "tenplus")

companysize = "small to medium-size ";
else if (numberofpeople == "hundredplus")

companysize = "medium-size ";
else companysize = "large";

// Print a message tailored to the company that sent the form.

out.println("<H3>" +
"We would love to help your " + companysize + " company" +
" to solve its needs for " + skillsneeded + "</H3>");

// Print the closing tags in the HTML page
// and close the output stream.
out.println("</BODY></HTML>");
out.close();

// end the method
}

// end the class
}

Running the Example

To run this example, save servform.htm to the directory of your choice in or
under the server’s document root. Create a subdirectory called servlet in the
directory where you save servform.htm. Save servform.class to the new
servlet directory. Register the new servlet directory as a servlets directory,
as discussed in the section "Registering Servlet Directories."
28 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples
To view the form, open servform.htm using an http URL. For example, if you
put servform.htm in the document root directory, open it with the URL
http://your_server/servform.htm.

JSP Examples
This section presents the following JSP examples:

• JSP that Accesses the Request Object. This example is self-contained -- it
uses no external beans or Java classes.

• JSP that Responds to a Form and Uses Java Beans.

You can find additional examples in the directory server_root/plugins/
samples/servlets/jsp.

These examples are simple, introductory examples. For information about
creating JavaServer Pages, see Sun Microsystem’s JavaServer Pages web page at:

http://www.javasoft.com/products/jsp/index.html

JSP that Accesses the Request Object

JavaServer Pages contain both standard HTML tags and JSP tags. One of the JSP
tags is <DISPLAY> which displays information contained in bean objects. The
<DISPLAY> tag has the following format:

<DISPLAY property=object:property>

where property can include nested properties, for example:

property:object1:property2:property3

Examples of the <DISPLAY> tag are:

<DISPLAY property=request:method>
<DISPLAY property=product:version:modificationDate>

All JSP pages can implicitly access the request object, which contains
information about the request that invoked the page, such as the requested
URI, the query string, the content type and so on. The request object has
properties such as requestURI, queryString, and contentType.
 Servlet and JSP Examples 29

JSP Examples
This example displays information about the current request. It gets all its data
from the request object, which is automatically passed to the JSP. This
example is the snoop.jsp example in the server_root/plugins/samples/
servlets/jsp/snoop directory.

Figure 2.4 shows an example of the output page generated by this JSP.

Figure 2.4 Output page generated by snoop.jsp

The source code for snoop.jsp is:

<HTML>

<BODY>
<H1> Request Information </H1>

JSP Request Method: <DISPLAY property=request:method>

Request URI: <DISPLAY property=request:requestURI>

Request Protocol: <DISPLAY property=request:protocol>

Servlet path: <DISPLAY property=request:servletPath>

Path info: <DISPLAY property=request:pathInfo>

Path translated: <DISPLAY property=request:pathTranslated>

Query string: <DISPLAY property=request:queryString>

Content length: <DISPLAY property=request:contentLength>

Content type: <DISPLAY property=request:contentType>

Server name: <DISPLAY property=request:serverName>

Server port: <DISPLAY property=request:serverPort>

Remote user: <DISPLAY property=request:remoteUser>

Remote address: <DISPLAY property=request:remoteAddr>

30 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples
Remote host: <DISPLAY property=request:remoteHost>

Authorization scheme: <DISPLAY property=request:authType>

The input parameter value is <DISPLAY property=request:params:input1
placeholder="NoValueGiven">

</BODY></HTML>

JSP that Responds to a Form and Uses
Java Beans

This example discusses a JSP that accesses data on Java beans to respond to a
form.

This example presents a web page, shoeform.htm, that displays a form asking
the user to select the kinds of shoes they want to know more about. The action
of the form is shoes.jsp. This JSP file gets information about the relevant
kinds of shoes from a set of Java beans.(Note that Java beans were originally
designed for use with visual tool builders, and they have some overhead that
can make them slow when used to retrieve data to display in web pages.)

The discussion of this example has the following sections:

• The Form

• The Output Page Generated by the JSP File

• Accessing Input Parameters

• Testing for Parameter Values

• Using Externally Defined Java Beans

• Source Code for shoes.jsp

• The Java Beans Used in this Example

• Running the Example

The Form

The form in the page has the following elements:

• a text field called userName.

• three checkboxes named Sandals, HikingBoots and WalkingShoes

• a submit button

The form’s method is POST and the action is shoes.jsp. (It also works if the
form’s method is GET.)
 Servlet and JSP Examples 31

JSP Examples
<FORM METHOD=POST ACTION="shoes.jsp">

Figure 2.5 shows an example of the form.

Figure 2.5 This form invokes a JSP as its action

You can view this form live at shoeform.htm.

The Output Page Generated by the JSP File

The JSP file shoes.jsp responds to the form. It uses the request:params
property to access the parameters received from the form.

The output page generated by shoes.jsp prints a welcome message that
includes the user’s name, as entered in the userName text field in the form. It
then displays information about each kind of shoe that was selected. The JSP
file gets information about the shoes from Java Beans.

This JSP file demonstrates the following features:

• Accessing Input Parameters

• Testing for Parameter Values

• Using Externally Defined Java Beans

Figure 2.6 shows an example of the output from shoes.jsp:
32 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples
Figure 2.6 A JSP page generated in response to a form submission

You can view the JSP file at:

shoes.jsp

Accessing Input Parameters

JSP pages can extract input parameters when invoked by a URL with a query
string, such as when they are invoked as a form action for a form that uses the
GET method. The implicit request object has a property params whose value
is an object that has attributes for each parameter in the query string.

For example, if the following URL is used to invoke a JSP:

http://poppy.my_domain.com/products/
shoes.jsp?userName=Jocelyn&Sandals=on&WalkingShoes=on

The request:params object has properties userName, Sandals, and
WalkingShoes.
 Servlet and JSP Examples 33

JSP Examples
Testing for Parameter Values

This example uses the <INCLUDEIF> JSP tag, which includes a block of JSP
and/or HTML code if a given parameter has a specified property.

For example:

<INCLUDEIF PROPERTY="request:params:Sandals" VALUE="on">
<H4>Sandals</H4>
</INCLUDEIF>

This code says if, and only if, the input parameters include a parameter named
Sandals whose value is "on", then print <H4>Sandals</H4> to the output
page.

For more information about the <INCLUDEIF> tag, and the corresponding
<EXCLUDEIF> tag, see the JSP API documentation from Sun Microsystems at:

http://www.javasoft.com/products/jsp/index.html

Using Externally Defined Java Beans

Some bean objects including the request object, are always available implicitly
to a JSP page. Other objects, such as user-defined objects, are not automatically
available to the page, in which case you have to include a <USEBEAN> tag to tell
the page which object to use. S

The JSP tag <USEBEAN> creates an instance of an externally defined Java Bean
for use within the JSP page. For example, the following code creates an
instance of the Sandals bean which is in com/shoes/beans.

<USEBEAN name="sandalA" type=com.jocelyn.beans.sandals lifespan=page>
</USEBEAN>

In this case, the Sandals bean instance exists for the duration of the page.

The following code retrieves the value of the colors property of the Sandals
bean.

The available colors for these shoes include
<DISPLAY property=sandalA:colors>

Source Code for shoes.jsp

Here is the source code for the JSP file shoes.jsp:

<HTML>
34 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples
<HEAD><TITLE>When the shoe fits, wear it</TITLE></HEAD>

<H1>
This response was generated by a JSP file that uses beans
</H1>

<!-- Get the person who sent the form from the userName parameter -->
<P>Hello <DISPLAY PROPERTY="request:params:userName">!

Welcome to our JSP form test results.
</P>

<!-- Display a bullet item for each kind of shoe selected -->
<P>Here is information about the kind of shoes you are interested in:

<INCLUDEIF PROPERTY="request:params:Sandals" VALUE="on">
<USEBEAN name="sandalS" type=com.shoes.beans.sandals lifespan=page>
</USEBEAN>
<H4>Sandals</H4>

The available colors for these shoes include
<DISPLAY property=sandalS:colors>.

These shoes feature <DISPLAY property=sandalS:features>.

</INCLUDEIF>

<INCLUDEIF PROPERTY="request:params:HikingBoots" VALUE="on">
<USEBEAN name="hikingH" type=com.shoes.beans.hikingBoots

lifespan=page>
</USEBEAN>
<H4>Hiking Boots</H4>

The available colors for these shoes include
<DISPLAY property=hikingH:colors>.

These shoes feature <DISPLAY property=hikingH:features>.

</INCLUDEIF>

<INCLUDEIF PROPERTY="request:params:WalkingShoes" VALUE="on">
<USEBEAN name="walkingW" type=com.shoes.beans.walkingShoes

lifespan=page>
</USEBEAN>
<H4>Walking Shoes</H4>

The available colors for these shoes include
<DISPLAY property=walkingW:colors>.

These shoes feature <DISPLAY property=walkingW:features>.

</INCLUDEIF>

</BODY>
</HTML>
 Servlet and JSP Examples 35

JSP Examples
The Java Beans Used in this Example

The shoes.jsp file accesses three Java Bean objects, sandals, hikingBoots,
and walkingShoes.

These classes all inherit from a superclass Shoes, which defines setter and
getter methods for the variables prodName, colors, and features. The
subclasses Sandals, HikingBoots, and WalkingShoes simply define their
own values for these variables.

The source code for these classes is available through the following links:
• shoes.java

• sandals.java

• hikingBoots.java

• walkingShoes.java

A jar file containing all the class files is available at:

• shoes.jar

For more information about defining Java Beans, see:

http://www.javasoft.com/beans/index.html

Running the Example

To run this example, get the jar file shoes.jar (or create it by compiling
shoes.java , sandals.java , hikingShoes.java , and walkingShoes.java
and then packaging the compiled class files into a JAR file). Put shoes.jar in a
subdirectory of your choosing in your Enterprise Server root directory. If you
already have a directory where you put JAR files, you can put it in there.

Add the full pathname of the shoes.jar location to the JVM class path, which
you can do in the Servlets>Configure JVM Attributes page of the Server
Manager interface.

Put shoeform.htm and shoes.jsp together in a subdirectory in or below the
Enterprise Server’s document root directory. (JSP files do not go in a registered
servlet directory.)

Note Note that the link above to shoes.jsp opens a file of the name
shoes.jsp.txt -- save this file from the browser without the .txt extension
to save it as a JSP file rather than a plain text file.
36 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP Examples
To view the form, open shoesform.htm using an http URL. For example, if
you put shoesform.htm in the document root directory, open it with the URL
http://your_server/shoesform.htm.
 Servlet and JSP Examples 37

JSP Examples
38 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

A
Appendix A Session Managers
Session objects maintain state and user identity across multiple page requests
over the normally stateless HTTP protocol. A session persists for a specified
time period, across more than one connection or page request from the user. A
session usually corresponds to one user, who may visit a site many times. The
server can maintain a session either by using cookies or by rewriting URLs.
Servlets can access the session objects to retrieve state information about the
session.

This appendix has the following sections:

• Session Overview

• Specifying a Session Manager

• SimpleSessionManager

• MMapSessionManager

• How Do Servlets Access Session Data?

Session Overview
An HTTP session represents the server's view of the session. The server
considers a session new under these conditions:

• The client does not yet know about the session

• The session has not yet begun
Appendix A, Session Managers 39

Specifying a Session Manager
A session manager automatically creates new session objects whenever a new
session starts. In some circumstances, clients will not join the session, for
example, if the session manager uses cookies and the client does not accept
cookies.

Enterprise Server 4.0 comes with two session managers for creating and
managing sessions:

• SimpleSessionManager -- the default session manager when the server
runs in single process mode.

• MMapSessionManager -- the default session manager when the server runs
in multi-process mode.

Enterprise Server 4.0 also allows you to develop your own session managers
and load them into the server. The build includes the source code for
SimpleSessionManager and the session objects it manages, SimpleSession.
The source code for these classes are provided as a starting point for you to
define your own session managers if desired. These Java files are in the
directory server-root/plugins/samples/servlets/sessions/
SimpleSession.

Specifying a Session Manager
By default, if the Enterprise Server starts in single process mode, it uses
SimpleSessionManager as the session manager for servlets. If it starts in multi-
process mode, it uses MMapSessionManager. For more information about
single process mode versus multi processes mode, see Chapter 7, “Configuring
Server Preferences” in the Enterprise Server 4.0 Administrator’s Guide.

You can change the session manager in either of the following ways:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field, specify the session manager. (You cannot
specify initial parameter values in the interface).

• Edit the file servlet.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and, if
appropriate, also add a line specifying the parameters for the session
manager. For example:
40 Programmer’s Guide to Servlets in Enterprise Server 4.0

SimpleSessionManager
servlets.sessionmgr=com.netscape.server.http.session.YourSessionManager
servlets.sessionmgr.initArgs=maxSessions=20,timeOut=300,reapInterval=150

SimpleSessionManager
The SimpleSessionManager works only in single process mode. It is loaded
by default if the Enterprise Server starts in single-process mode when a
SessionManager is not specified in the servlets.properties configuration
file. These sessions are not persistent, that is, all sessions are lost when the
server is stopped.

Parameters

The SimpleSessionManager class takes the following parameters:

• maxSessions - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessions number of sessions present
at that time.

• timeOut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven't
been accessed for at least timeOut seconds will be destroyed by the
reaper() method.

• reapInterval - the amount of time in seconds that the SessionReaper
thread sleeps before calling the reaper() method again.

Enabling SimpleSessionManager

To enable the Enterprise Server to use SimpleSessionManager do either of
the following:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com.netscape.server.http.session.SimpleSessionManager
Appendix A, Session Managers 41

MMapSessionManager
• Edit the file servlet.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and a line
specifying the parameters for the session manager:

servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
servlets.sessionmgr.initArgs=maxSessions=20,timeOut=300,reapInterval=150

Source Code for SimpleSessionManager

The SimpleSessionManager creates a SimpleSession object for each session.
The source files for SimpleSessionManager.java and SimpleSession.java
are in the directory server-root/plugins/samples/servlets/sessions/
SimpleSession.

The source code for SimpleSessionManager.java and SimpleSession.java
are provided so you can use them as the starting point for defining your own
session managers and session objects. These files are very well commented.

SimpleSessionManager extends NSHttpSessionManager. The class file for
NSHttpSessionManager is in the JAR file NSServletLayer.jar in the
directory server_root/plugins/jar. SimpleSessionManager implements
all the methods in NSHttpSessionManager that need to be implemented, so
you can use SimpleSessionManager as an example of how to extend
NSHttpSessionManager. When compiling your subclass of
SimpleSessionManager or NSHttpSessionManager, be sure that the JAR file
NSServletLayer.jar is in your compiler’s class path.

MMapSessionManager
This is a persistent memory map file-based session manager that works in both
single process as well as multi-process mode. It can be used for inter-process
communication. It is loaded by default if the Enterprise Server starts in multi-
process mode when a session manager is not specified in the
servlets.properties configuration file.
42 Programmer’s Guide to Servlets in Enterprise Server 4.0

MMapSessionManager
Parameters

MMapSessionManager takes the following parameters:

• maxSessions - the maximum number of sessions maintained by the session
manager at any given time. The session manager refuses to create any more
new sessions if there are already maxSessions number of sessions present
at that time.

• maxValuesPerSession - maximum number of values a session can hold.

• maxValuesSize - maximum size of the object that can be stored in the
session.

• timeOut - the amount of time in seconds after a session is accessed by the
client before the session manager destroys it. Those sessions that haven't
been accessed for at least timeOut seconds will be destroyed by the
reaper() method.

• reapInterval - the amount of time in seconds that the SessionReaper
thread sleeps before calling the reaper() method again.

Enabling MMapSessionManager

To enable Enterprise Server to use MMapSessionManager do either of the
following:

• Use the Servlets>Configure Global Servlet Attributes page in the Server
Manager interface.

In the Session Manager field specify:

com.netscape.server.http.session.MMapSessionManager

• Edit the file servlet.properties in the directory server-id/config.

Add a line specifying a value for servlets.sessionmgr and a line
specifying the parameters for the session manager:

servlets.sessionmgr=com.netscape.server.http.session.MMapSessionManager
SessionManager
servlets.sessionmgr.initArgs=maxSessions=20,maxValueSize=1024,timeOut=3
00,reapInterval=150

This session manager can only store objects that implement
java.io.Serializable.
Appendix A, Session Managers 43

How Do Servlets Access Session Data?
How Do Servlets Access Session Data?
To access the state information stored in a session object, your servlet can
create a new session as follows:

// request is an HttpServletRequest that is passed to the servlet
SessionClass session = request.getSession(true);

The servlet can call any of the public methods in
javax.servlet.http.HttpSession on the session object. These methods
include (amongst others):

getCreationTime
getId
getLastAccessedTime
getMaxInactiveInterval
getValue

For more information about the classes HttpServletRequest and
HttpSession, see Sun Microsystem’s API Servlets Documentation at:

http://www.javasoft.com/products/servlet/2.1/html/api-reference.fm.html
44 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

B
Appendix B Servlet Settings in obj.conf
Netscape Enterprise Server 4.0 automatically modifies the file obj.conf in the
config directory to load the servlet engine if servlets are enabled. Whenever
you make changes to servlet settings by using the Server Manager interface, the
system automatically updates obj.conf appropriately.

However, in case you are interested in the settings that affect servlets, this
appendix describes the directives in obj.conf and value settings mime.types
that are relevant to servlets.

Directives for Enabling Servlets
The following directives in the init section of obj.conf load and initialize the
servlet engine to enable servlets:

Init fn="load-modules" shlib="server_root/bin/https/bin/
NSServletPlugin.dll/so"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,
NSServletService" shlib_flags="(global|now)"

Init fn="NSServletEarlyInit" EarlyInit=yes

Init fn="NSServletLateInit" LateInit=yes

NSServletEarlyInit takes an optional parameter cache_dir that specifies
the location of a temporary cache directory for JSP classes. By default the
directory is named "ClassCache" and goes under your server root directory.
Appendix B, Servlet Settings in obj.conf 45

Directives for Registered Servlet Directories
NSServletLateInit takes an optional parameter CatchSignals that specifies
whether or not Java thread dumps are logged. The value is yes or no.

When servlets are enabled, the following directive appears in the default object:

NameTrans fn="NSServletNameTrans" name="servlet"

This directive is used for servlet virtual path translations and for the URI cache.
Do not delete this line when servlets are enabled.

Also, obj.conf always has the following objects, which you should not delete:

<Object name="servlet">
Service fn="NSServletService"
</Object>

<Object name="jsp">
Service fn="NSServletService"
</Object>

If you delete these objects, you will no longer be able to use the Server
Manager interface to enable servlets and modify servlet settings.

Directives for Registered Servlet Directories
For each registered servlet directory, the default object in obj.conf has a
NameTrans directive that assigns the name ServletByExt to all requests to
access that directory. For example:

NameTrans fn="pfx2dir" from="/servlet" dir="D:/Netscape/Server4/docs/
servlet" name="ServletByExt"

A separate object named ServletByExt has instructions for processing
requests for servlets:

<Object name="ServletByExt">
ObjectType fn="force-type" type="magnus-internal/servlet"
Service type="magnus-internal/servlet" fn="NSServletService"
</Object>

Do not delete this object, even if no servlet directories are currently registered.
If this object is deleted, you will no longer be able t use the Server Manager
interface to register servlet directories.
46 Programmer’s Guide to Servlets in Enterprise Server 4.0

JSP
JSP
The following line in mime.types sets the type for files with the extension
.jsp:

type=magnus-internal/jsp exts=jsp

When JSP is enabled, the following directive in obj.conf handles the
processing of requests for files of type magnus-internal/jsp (that is, JSP
files)

Service fn="NSServletService" type="magnus-internal/jsp"
Appendix B, Servlet Settings in obj.conf 47

JSP
48 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

C
Appendix C servlets.properties and

rules.properties
This appendix discusses the purpose and use of the files
servlet.properties and rules.properties, which reside in the directory
server_id/config.

servlet.properties
The servlet.properties file defines global servlet settings and the list of
servlets in the system.

The servlet.properties file specifies global settings for servlets, such as a
servlet to run when the Enterprise server starts up, the reload interval for
servlets, and so on. It also specifies configuration information for individual
servlets. Configuration information includes the class name, the class path and
any input arguments required by the servlet.

If you want to specify a virtual path translation for a servlet, the servlet must be
configured in the servlet.properties file.

You can specify configuration information for servlets either by using the
Servlets>Configure Servlet Attributes page in the Server Manager interface or by
editing servlets.properties directly. Whenever you make a change in the
Servlets>Configure Servlet Attributes page in the Server Manager interface, the
system automatically updates servlets.properties.
Appendix C, servlets.properties and rules.properties 49

rules.properties
When specifying attributes for a servlet, you specify a name parameter for the
servlet. This name is not the name of the class file for the servlet but is instead
an internal identifier for the servlet. You specify the name of the class file as the
value of the code parameter.

Here is a sample servlet.properties file:

servlet.properties
Servlets Properties
servlets to be loaded at startup
servlets.startup= hello
the reload interval for dynamically-loaded servlets and JSPs
(default is 10 seconds)
servlets.config.reloadInterval=5
the default document root,
needed so ServletContext.getRealPath will work
servlets.config.docRoot=E:/Netscape/Server4/docs
the session manager
servlets.sessionmgr=com.netscape.server.http.session.SimpleSessionManager
tracker servlet
servlet.tracker.code=MyTrackerServlet
servlet.tracker.classpath=D:/Netscape/Server4/docs/servlet
demo1 servlet
servlet.demo1.code=Demo1Servlet
servlet.demo1.classpath=D:/Netscape/Server4/docs/demos
servlet.demo1.initArgs=a1=0,b1=3456

rules.properties
The rules.properties files defines servlet virtual path translations. For
example, you could set up a mapping so that the URL pointing to /index.html
URL invokes the servlet /servlet/runintro.class. You can specify virtual
paths for your servlets either by setting parameters in the Servlets>Configure
Servlet Virtual Path Translation page of the Server Manager interface or by
specifying the paths in the rules.properties file.

Note that the “name” associated with the servlet in servlets.properties is
used in the file rules.properties -- the class name of the servlet does not
show up in rules.properties. For example, the following lines in
servlet.properties associate the servlet name demo1 with the servlet class
file Demo1Servlet.class in the directory D:/Netscape/Server4/docs/
demos.

in servlets.properties
demo1 servlet
50 Programmer’s Guide to Servlets in Enterprise Server 4.0

rules.properties
servlet.demo1.code=Demo1Servlet
servlet.demo1.classpath=D:/Netscape/Server4/docs/demos

The following line in rules.properties defines a servlet virtual path
translation such that the URL http://server-name/mytest2 invokes the servlet
at D:/Netscape/Server4/docs/demos/Demo1Servlet.class.

/mytest2=demo1

Here is an example of rules.properties.

rules.properties (defines URL name space for each of the servlets):

Servlet rules properties
This file specifies the translation rules for invoking servlets.
The syntax is:
/virtual-path=servlet-name
where virtual-path is the virtual path used to invoke the servlet,
and servlet-name is the name of the servlet as specified in
servlets.properties.
Surrounding white space is ignored.
The ordering of the rules is not important, as the longest
match is always used first.
/mytest1=tracker
/mytest2=demo1
Appendix C, servlets.properties and rules.properties 51

rules.properties
52 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

D
Appendix D JVM Configuration
The Java Virtual Machine (JVM) works by default without any additional
configuration if properly set up.

However, if you need to specify settings for the JVM, such as additional
classpath information, you can configure the JVM properties for Enterprise
Server via the Administrator interface. You can add as many other properties as
you want to (up to 64).

You can also configure JVM parameters by editing the jvm11.conf or
jvm12.conf configuration files, (depending on which version of the JDK is
being used) which reside under the server’s config directory.

Here is an example jvm.conf file:

jvm.conf (example for JDK1.1):

[JVMConfig]
#jvm.nativeStackSize=131072
#jvm.javaStackSize=409600
#jvm.minHeapSize=1048576
#jvm.maxHeapSize=16777216
#jvm.verifyMode=0
#jvm.enableClassGC=1
#jvm.enableVerboseGC=0
#jvm.disableAsyncGC=0
#jvm.verboseMode=1
jvm.enableDebug=1
jvm.debugPort=2525
Appendix D, JVM Configuration 53

jvm.classpath=/server_root/bin/https/jre/lib/classes.zip;
ANY_OTHER_JAVA_SPECIFIC_PROPERTY

For example, to disable JIT you can add the following line to jvm.conf:

java.compiler=DISABLED

jvm12.conf (example for JDK1.2)

[JVMConfig]
#jvm.minHeapSize=1048576
#jvm.maxHeapSize=16777216
jvm.enableClassGC=0
#jvm.verboseMode=1
#jvm.enableDebug=1
jvm.option=-Xrunoii
jvm.profiler=optimizeit
java.compiler=NONE
OPTITDIR=D:/App/IntuitiveSystems/OptimizeIt30D

The configuration file for JDK1.2 is similar to the one for JDK1.1. Generally you
should use plain property options (like name=value) for the JDK1.2
configuration and jvm.option=options for JVM-vendor dependant
configurations. There could be multiple occurrences of jvm.option
parameters.

In Enterprise Server 4.0, jvm.conf files support a configuration parameter called
jvm.stickyAttach. Setting this parameter to 1 causes threads to remember
that they are attached to the JVM, thus speeding up request processing by
eliminating calls to AttachCurrentThread and DetachCurrentThread. It can,
however, have side effect as recycled threads that may be doing other
processing can be suspended from the garbage collection pool arbitrarily.

For information about JVM, see The Java Virtual Machine Specification from
Sun at

http://www.javasoft.com/docs/books/vmspec/html/VMSpecTOC.doc.html
54 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

E
Appendix E Remote Servlet Debugging
Enterprise Server 4.0 ships with the Java Runtime Environment (JRE), not the
Java Development Kit (JDK). However, during installation you can select an
option that tells the server to use the JDK if it is installed elsewhere on your
system.

If the server has been instructed to use a JDK, you can do remote servlet
debugging. If the server is using the JRE, you need to switch it to using the JDK
before you can do remote debugging. For information on instructing the server
to use the JDK or the JRE, see the section “Configuring JRE/JDK Paths” in
Chapter 1, “Using Servlets and JavaServerPages.”

Assuming that the server is using the JDK, you can enable remote debugging
by following these steps:

• Make sure that the server is running in single-process mode. Single-process
mode is the default, but you can check in the file magnus.conf to make
sure that the MaxProcs parameter is not set to a value greater than 1. If you
do not see a setting for MaxProcs in magnus.conf then the default value of
1 is enabled for it.

For more information about single process mode versus multi processes
mode, see Chapter 7, “Configuring Server Preferences” in the Enterprise
Server 4.0 Administrator’s Guide.

• Set the following parameters in jvm11.conf or jvm12.conf as
appropriate:
Appendix E, Remote Servlet Debugging 55

jvm.enableDebug=1
java.compiler=DISABLED

• Change your obj.conf to use the debuggable version of the JVM (this
doesn’t apply for JDK1.2):

Init fn="load-modules" shlib="server_root/bin/https/bin/
NSServletPlugin_g.dll"
funcs="NSServletEarlyInit,NSServletLateInit,NSServletNameTrans,NSServle
tService" shlib_flags="(global|now)"

• Start the server manually and record the password for remote debugging
(this will be displayed on the console)

• Start the Java debugger: jdb -host your_host -password
the_password

You should be able to debug your Java classes now.
Appendix E, Remote Servlet Debugging 56

Appendix

F
Appendix F Remote Servlet Profiling
You can use Optimizeit! 3.0 from Intuitive Systems to perform remote profiling
on the Enterprise Server to discover bottlenecks in server-side performance.

You can purchase Optimizeit! from Intuitve Systems at:

http://www.optimizeit.com/index.html

Once Optimizeit! is installed using the following instructions it becomes
integrated into Enterprise Server 4.0.

To enable remote profiling, make the following modifications in the
jvm11.conf or jvm12.conf files as appropriate:

jvm[12].conf example:

jvm.enableClassGC=0
jvm.option=-Xrunoii # this is only required for JDK1.2
jvm.profiler=optimizeit
java.compiler=NONE
OPTITDIR=<optimizeit_root_dir>/OptimizeIt30D

When the server starts up with this configuration, you can attach the profiler
(for further details see the Optimizeit! documentation).

Also, update the PATH and NSES_CLASSPATH system variables to include the
profiler’s own jar files and dlls.

Note: If any of the configuration options are missing or incorrect the profiler
may experience problems that affect the performance of the Enterprise Server.
Appendix F, Remote Servlet Profiling 57

58 Programmer’s Guide to Servlets in Enterprise Server 4.0

Appendix

G
Appendix G API Clarifications
This appendix clarifies the way some of the standard Servlet API work in
Enterprise Server 4.0. For the official documentation for the API discussed here
(and for all servlets API) see the Servlets API Class Reference published by Sun
Microsystems at:

http://www.javasoft.com/products/servlet/2.1/html/api-reference.fm.html

This appendix provides clarifications for using the following API with
Enterprise Server 4.0:

• HttpUtils.getRequestURL()

• HttpSession.setMaxInactiveInterval()

• GenericServlet.getInitParameter() and getInitParameterNames()

• ServletContext.getContext()

• RequestDispatcher.forward() and include()

• Request.getInputStream() and getReader()

HttpUtils.getRequestURL()
public static StringBuffer getRequestURL(HttpServletRequest request);

This method reconstructs the URL used by the client to make the given request
on the server. This method accounts for difference in scheme (such as http,
https) and ports, but does not attempt to include query parameters.
Appendix G, API Clarifications 59

HttpSession.setMaxInactiveInterval()
This method returns a StringBuffer instead of a String so that the URL can be
modified efficiently by the servlet

Clarification

To determine the server name part of the requested URL, Enterprise Server first
tries the to use the "Host" header and then looks at the value of ServerName in
magnus.conf. The server name by default is the machine name. But this value is
editable while installing Enterprise Server 4.0. If the server name has been
changed, HttpUtils.getRequestURL might not return the host name that is
needed to reconstruct the request.

For example, suppose the request is http://abc/index.html. However, the
server name has been changed to xyz. In this case, HttpUtils.getRequestURL()
might return http://xyz/index.html, which is not the original URL that was
requested.

HttpSession.setMaxInactiveInterval()
public int setMaxInactiveInterval(int interval);

Sets the amount of time that a session can be inactive before the servlet engine
is allowed to expire it.

Clarification

The returned int is the previous value.

It is not possible to set the maximum inactive interval so that the session never
times out. The session will always have a timeout value.

If you pass a negative or zero value, the session expires immediately.

GenericServlet.getInitParameter() and
getInitParameterNames()

public String getInitParameter(String name);
60 Programmer’s Guide to Servlets in Enterprise Server 4.0

ServletContext.getContext()
public String getInitParameter(String name);

This method returns a String containing the value of the servlet’s named
initialization parameter, or null if this parameter does not exist.

public Enumeration getInitParameterNames();

This method returns an enumeration of String objects containing the names of
the initialization parameters for the calling servlet. If the calling servlet has no
initialization parameters, getInitParameterNames returns an empty
enumeration.

Clarification

For servlets running on Enterprise Server 4.0, the methods getInitParameter
and getInitParameterNames for the class ServletConfig only work for servlets
that are invoked through virtual path translations. The same restriction applies
to the convenience methods of the same names in the class GenericServlet,
which invoke the corresponding methods on ServletConfig.

For information about setting virtual path translations, see the section
Specifying Servlet Virtual Paths in Chapter 1, “Using Servlets and
JavaServerPages.”

These methods do not work if the servlet is invoked by a client request that
specifies a servlet in a registered servlet directory rather than using a virtual
path translation to access the servlet.

ServletContext.getContext()
public ServletContext getContext(String uripath);

Returns the servlet context object that contains servlets and resources for a
particular URI path, or null if a context cannot be provided for the path.

Clarification

This method only works if both the following conditions are true:
Appendix G, API Clarifications 61

RequestDispatcher.forward() and include()
• the servlet whose context is being obtained (that is, the servlet pointed to
by uripath) has been configured either through the Servlets>Configure
Servlet attributes property of the Server Manager interface or by editing
servlets.properties.

• the servlet whose context is being obtained has been loaded.

Enterprise Server 4.0 does not load a servlet specified by a URI when
getContext() is called from another servlet to get the context of an
unloaded servlet.

RequestDispatcher.forward() and include()
public void forward(ServletRequest request, ServletResponse response)
throws ServletException, IOException;

Used for forwarding a request from this servlet to another resource on the web
server. This method is useful when one servlet does preliminary processing of a
request and wants to let another object generate the response.

The request object passed to the target object will have its request URL path
and other path parameters adjusted to reflect the target URL path of the target
object.

You cannot use this method if a ServletOutputStream object or PrintWriter
object has been obtained from the response. In that case, the method throws an
IllegalStateException.

public void include(ServletRequest request, ServletResponse response)
throws ServletException, IOException

Used for including the content generated by another server resource in the
body of a response. In essence, this method enables programmatic server-side
includes. The request object passed to the target object will reflect the request
URL path and path info of the calling request. The response object only has
access to the calling servlet's ServletOutputStream object or PrintWriter
object.

An included servlet cannot set headers. If the included servlet calls a method
that needs to set headers (such as cookies), the method is not guaranteed to
work. As a servlet developer, you must ensure that any methods that might
62 Programmer’s Guide to Servlets in Enterprise Server 4.0

Request.getInputStream() and getReader()
need direct access to headers are properly resolved. To ensure that a session
works correctly, start the session outside the included servlet, even if you use
session tracking.

Clarification

In Enterprise Server 4.0, the dispatcher.forward() method may or may not
throw an IllegalStateException when either Writer or OutputStream have
been obtained. This behavior follows the 2.2 draft and is needed for JSP error
page handling. It throws the exception only if the actual data has been flushed
out and sent to the client. Otherwise, the data pending in the buffer is simply
discarded.

In the case of servlets in registered servlet directories and JSP, include()
flushes the output and headers before doing the include, which effectively
causes any further calls to setHeader() to have no effect. The same behavior
occurs when forwarding to non-servlet URIs (like cgis or static files). In the case
of statically-defined uri mapping rules setHeader() might work until it exceeds
the buffer.

The forward() and include() methods may throw a ServletException if the
target URI is identified as an unsafe URI (that is, it includes insecure path
characters such as //, /./, /../ and/., /.. (and also ./ for NT) at the end of
the URI.

Request.getInputStream() and getReader()
There are two ways for a servlet to read the raw data posted by a client:

• by obtaining the InputStream through the request.InputStream() method,
an older method.

• by obtaining a BufferedRead through the request.getReader() method, a
method in use since 2.0.
Appendix G, API Clarifications 63

Request.getInputStream() and getReader()
Clarification

A servlet will hang if it attempts to use an InputStream to read more data than is
physically available. (To find how much data is available, use
request.getContentLength().) However, if the servlet reads data using a
BufferedReader returned from a call to getReader (), the allowed content
length is automatically taken into the account.
64 Programmer’s Guide to Servlets in Enterprise Server 4.0

Index

A
about this book 3

accessing
JSP 8
request object in JSP 29
servlets 8

activating
JSP 9
servlets 9

API
clarifications 59

API reference
JavaBeans 7
JSP 7
servlets 6

AttachCurrentThread 54

B
beans 7

example of accessing from JSP 31
examples directory 21

bookstore
examples directory 21

C
cache_dir

optional parameter to NSServletEarlyInit 45

cache directories 18

CatchSignals
optional parameter to NSServletLateInit 46

clarifications
of API 59

ClassCache 18

classpath
for JRE and JDK 17
for JVM 19
for servlets 12
JVM parameter 19

compiler
JVM parameter 19

compiling
servlets 6

configuring
global servlet properties 10
individual servlets 12
JRE/JDK paths 16
JVM 19, 53

D
debugging

enabling 20
servlets remotely 55

deleting
version files 18

DetachCurrentThread 54

directives
for enabling servlets 45

directories
for servlets 11

DISPLAY tag
example 29
JSP 29

doGet() method 23, 26

E
edemo

examples directory 21
Index 65

enableClassGC 54

enable class GC
JVM parameter 20

enable debug
JVM parameter 20

enabling
JDK or JRE 16
JSP 8
MMapSessionManager 43
servlets 9
session managers 40
SimpleSessionManager 41

examples
DISPLAY tag 29
form that invokes a servlet 24
form that invokes JSP 31
JSP 29
JSP accessing beans 31
location in the build 21
servlets 22
servlet that parses input parameters 24
shipped in the build 21
simple servlet 22
virtual servlet path 14

F
file extensions

.class 11

.jsp 8, 47

forms
example of invoking JSP 31
example of invoking servlets 24

forward() 62

G
garbage collection

enabling 20

GenericServlet.getInitParameter() 60

getContext() 61

getInitParameter() 60, 61

getInitParameterNames() 60

global servlet properties
configuring 10

H
HttpServlet 23

HttpServletRequest
more info 44

HttpSession
more info 44

HttpSession.setMaxInactiveInterval() 60

HttpUtils.getRequestURL() 59

I
include() 62

INCLUDEIF
JSP tag 34

input parameters
accessing in JSP 33
parsing in servlets 24

installing
JRE or JDK 7
servlets 8

Intuitve Systems
web site 57

J
jars

classpath 19

JavaBeans 7
specifying classpath 19

Java Development Kit
see JDK

Java Runtime Environment
see JRE

JavaServerPages
see JSP

Java Servlet API 6

Java Virtual Machine
see JVM
66 Programmer’s Guide to Enterprise Server 4.0

Java Virtual Machine Specification 54

JDK 7
downloading 7
enabling 16
installing 7
setting path 16
versions 16

JIT 19

JRE 7
enabling 16
installing 7
setting path 16

JSDK support 6

JSP 6
accessing beans example 31
accessing input parameters 33
accessing Java 6
accessing request object 29
activating 9
API reference 7
cache directory 18
enabling 8
example of invoking from forms 31
examples 29
examples directory 22
see also JSP tags
serving 8
specifying classpath for beans 19
using 5
using Server Manager interface 9

JSP tags
DISPLAY 29
INCLUDEIF 34
USEBEAN 34

just-in-time compiler 19

JVM
catching thread dumps 46
configuration 53
configuring 19
more info 54
specification 54

jvm.conf 19

jvm.stickyAttach 54

jvm11.conf 19, 53

jvm12.conf 19, 53

JVM parameters
classpath 19
compiler 19
enable class GC 20
enable debug 20
maximum heap size 19
minimum heap size 19
option 19
OPTITDIR 19
profiler 19
verbose mode 20

M
magnus-internal/jsp 47

make
examples directory 22

maximum heap size
JVM parameter 19

maxSessions
parameter for MMapSessionManager 43
parameter for SimpleSessionManager 41

maxValuesPerSession
parameter for MMapSessionManager 43

maxValuesSize
parameter for MMapSessionManager 43

minimum heap size
JVM parameter 19

MMapSessionManager 18, 42
enabling 43

multiple servlet directories 11

multi-process mode
for more info 40

N
NSES_JDK 17

NSES_JRE 17

NSHttpSessionManager 42

NSServletEarlyInit 45
Index 67

NSServletLateInit 45

NSServletLayer.jar 42

O
obj.conf 45

Optimizeit!
purchasing 57

option
JVM parameter 19

OPTITDIR
JVM parameter 19

P
path

to JRE or JDK 8, 16

path translations
specifying 13

persistent session manger 42

preface 3

process mode
for more info 40

profiler
JVM parameter 19

profiling
servlets remotely 57

property attribute
of DISPLAY tag 29

R
reaper() method

MMapSessionManager 43
SimpleSessionManager 41

reapInterval
parameter for MMapSessionManager 43
parameter for SimpleSessionManager 41

registered servlet directories 11

registering
individual servlets 12
servlet directories 11

reloading
servlets 10

reload interval 10

remote profiling 57

remote servlet debuggin 55

Request.getInputStream() 63

Request.getReader() 63

request:params property 32

RequestDispatcher.forward() 62

RequestDispatcher.include() 62

request object
accessing in JSP 29

rules.properties 49, 50

S
Server Manager interface

for managing servlets and JSP 9

servform.htm 24

serving
servlets and JSP 8

servlet.properties 49

servlet1 25

Servlet Args 12

ServletByExt 10

Servlet Classpath 12

Servlet Code (class name) 12

ServletContext.getContext() 61

servlet directories 11
default directory 11

Servlet Name 12

servlets 6
accessing from clients 8
accessing session data 44
activating 9
API clarifications 59
API reference 6
cache directories 18
compiling 6
68 Programmer’s Guide to Enterprise Server 4.0

configuring global properties 10
configuring individual servlets 12
debugging remotely 55
example of accessing 11
example of invoking from forms 24
examples 22
parsing input parameters 24
reloading 10
remote profiling 57
serving 8
session managers 39
sessions 39
specifying virtual paths 13
using 5
using Server Manager interface 9
virtual path translation 8

servlets.jar 6

servlets.properties 49

Servlets API Class Reference 59

SessionData 18

session data
accessing 44

Session Manager 10

session managers 39
MMapSessionManager 42
persistent 42
SimpleSessionManager 41
specifying 40

sessions 39
accessing from servlets 44
examples directory 22
overview 39

setMaxInactiveInterval() 60

shoes.jsp 32
source code 34

simple servlet example 22

SimpleSession
source code 42

SimpleSessionManager 41
enabling 41
source code 42

single process mode

for more info 40

snoop.jsp 30

source code
SimpleSession 42
SimpleSessionManager 42

specifying
JDK or JRE 7
servlet directories 11
session managers 40
virtual servlet paths 13

Startup Servlets 10

stickyAttach 54

T
timeOut

parameter for MMapSessionManager 43
parameter for SimpleSessionManager 41

U
unsafe URIs 63

USEBEAN
JSP tag 34

using
servlets and JSP 5

V
verboseMode 54

verbose mode
JVM parameter 20

version files 18
deleting 18

virtual paths
example 14
specifying 13
Index 69

70 Programmer’s Guide to Enterprise Server 4.0

Programmer’s Guide to Servlets in Enterprise Server 4.0
Contents
About This Book
1. Using Servlets and JavaServerPages

Servlets
JavaServer Pages
What Does the Server Need to Run Servlets and JSP?
Serving Servlets and JSP
Using the Server Manager Interface to Specify Servlet Behavior and At-
tributes
Activating Servlets and JSP
Configuring General Servlet Properties
Registering Servlet Directories
Registering Individual Servlets
Specifying Servlet Virtual Paths
Configuring JRE/JDK Paths
Deleting Version Files
Configuring JVM

2. Servlet and JSP Examples
Examples Shipped with Enterprise Server 4.0
Servlet Examples

A Simple Servlet Example
Example of a Servlet that Parses Input Parameters

JSP Examples
JSP that Accesses the Request Object
JSP that Responds to a Form and Uses Java Beans

Appendix A. Session Managers
Session Overview
Specifying a Session Manager
SimpleSessionManager

Parameters
Enabling SimpleSessionManager
Source Code for SimpleSessionManager

MMapSessionManager
Parameters
Enabling MMapSessionManager

How Do Servlets Access Session Data?
Appendix B. Servlet Settings in obj.conf

Directives for Enabling Servlets
Directives for Registered Servlet Directories
JSP

Appendix C. servlets.properties and rules.properties
71

servlet.properties
rules.properties

Appendix D. JVM Configuration
Appendix E. Remote Servlet Debugging
Appendix F. Remote Servlet Profiling
Appendix G. API Clarifications

HttpUtils.getRequestURL()
HttpSession.setMaxInactiveInterval()
GenericServlet.getInitParameter() and getInitParameterNames()
ServletContext.getContext()
RequestDispatcher.forward() and include()
Request.getInputStream() and getReader()

Index
72 Programmer’s Guide to Servlets in Enterprise Server 4.0

	About This Book
	Using Servlets and JavaServerPages
	Servlets
	JavaServer Pages
	What Does the Server Need to Run Servlets and JSP?
	Serving Servlets and JSP
	Using the Server Manager Interface to Specify Servlet Behavior and Attributes
	Activating Servlets and JSP
	Configuring General Servlet Properties
	Registering Servlet Directories
	Registering Individual Servlets
	Specifying Servlet Virtual Paths
	Configuring JRE/JDK Paths
	Deleting Version Files
	Configuring JVM

	Servlet and JSP Examples
	Examples Shipped with Enterprise Server 4.0
	Servlet Examples
	A Simple Servlet Example
	Example of a Servlet that Parses Input Parameters

	JSP Examples
	JSP that Accesses the Request Object
	JSP that Responds to a Form and Uses Java Beans

	Session Managers
	Session Overview
	Specifying a Session Manager
	SimpleSessionManager
	Parameters
	Enabling SimpleSessionManager
	Source Code for SimpleSessionManager

	MMapSessionManager
	Parameters
	Enabling MMapSessionManager

	How Do Servlets Access Session Data?

	Servlet Settings in obj.conf
	Directives for Enabling Servlets
	Directives for Registered Servlet Directories
	JSP

	servlets.properties and rules.properties
	servlet.properties
	rules.properties

	JVM Configuration
	Remote Servlet Debugging
	Remote Servlet Profiling
	API Clarifications
	HttpUtils.getRequestURL()
	HttpSession.setMaxInactiveInterval()
	GenericServlet.getInitParameter() and getInitParameterNames()
	ServletContext.getContext()
	RequestDispatcher.forward() and include()
	Request.getInputStream() and getReader()

	Index

